Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3, trục hoành và hai đường thẳng x = -1; x = 2 biết rằng mỗi đơn vị dài trên các trục tọa độ là 2 cm.

Câu hỏi :

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3, trục hoành và hai đường thẳng x = -1; x = 2 biết rằng mỗi đơn vị dài trên các trục tọa độ là 2 cm.

A. \(\frac{{15}}{4}c{m^2}.\)

B. \(\frac{{17}}{4}c{m^2}.\)

C. 17cm2

D. 15cm2

* Đáp án

C

* Hướng dẫn giải

Ta có:

\(S = \int\limits_{ - 1}^2 {\left| {{x^3}} \right|dx = \int\limits_{ - 1}^0 {\left| {{x^3}} \right|dx} + \int\limits_0^2 {\left| {{x^3}} \right|dx} = - \int\limits_{ - 1}^0 {{x^3}} dx + \int\limits_0^2 {{x^3}} dx} = - \frac{{{x^4}}}{4}\mathop |\nolimits_{ - 1}^0 + \frac{{{x^4}}}{4}\mathop |\nolimits_0^2 = \frac{{17}}{4}.\)

Do mỗi đơn vị trên trục là 2cm nên \(S = \frac{{17}}{4}{.2^2}c{m^2} = 17c{m^2}.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Thanh Sơn

Số câu hỏi: 50

Copyright © 2021 HOCTAP247