A. \(\left( {\frac{1}{2}; + \infty } \right)\)
B. \(\left( { - \infty ; - 1} \right) \cup \left( {\frac{1}{2};2} \right)\)
C. \(\left( { - \infty ;\frac{1}{2}} \right)\)
D. \(\left( { - 1;\frac{1}{2}} \right) \cup \left( {2; + \infty } \right)\)
A
Ta có \(g'\left( x \right) = \left( {1 + 2x} \right)f'\left( {1 + x + {x^2}} \right).{e^{f\left( {1 + x + {x^2}} \right)}}\), và \(1 + x + {x^2} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0\forall x \in R\)
\(g'\left( x \right) > 0 \Leftrightarrow \left( {1 + 2x} \right)f'\left( {1 + x + {x^2}} \right).{e^{f\left( {1 + x + {x^2}} \right)}} > 0 \Leftrightarrow \left( {1 + 2x} \right)f'\left( {1 + x + {x^2}} \right) > 0\)
\( \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} f'\left( {1 + x + {x^2}} \right) > 0\\ 1 + 2x > 0 \end{array} \right.\\ \left\{ \begin{array}{l} f'\left( {1 + x + {x^2}} \right) < 0\\ 1 + 2x < 0 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} 1 + x + {x^2} > 3\\ 1 + 2x > 0 \end{array} \right.\\ \left\{ \begin{array}{l} 1 + x + {x^2} < 3\\ 1 + 2x < 0 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x > 1\\ - 2 < x < - \frac{1}{2} \end{array} \right.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247