Cho hai hàm số f(x), g(x) liên tục trên đoạn [a;b] và số thực k tùy ý. Trong các khẳng định sau, khẳng định nào sai?

Câu hỏi :

Cho hai hàm số f(x), g(x) liên tục trên đoạn [a;b] và số thực k tùy ý. Trong các khẳng định sau, khẳng định nào sai?  

A. \(\int\limits_a^b {kf\left( x \right){\rm{d}}x} = k\int\limits_a^b {f\left( x \right){\rm{d}}x} \)

B. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x} = \int\limits_a^b {f\left( x \right){\rm{d}}x} + \int\limits_a^b {g\left( x \right){\rm{d}}x} \)

C. \(\int\limits_a^b {f\left( x \right){\rm{.g}}\left( x \right){\rm{d}}x} = \int\limits_a^b {f\left( x \right){\rm{d}}x.} \int\limits_a^b {g\left( x \right){\rm{d}}x} \)

D. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} = - \int\limits_b^a {f\left( x \right){\rm{d}}x} \)

* Đáp án

C

* Hướng dẫn giải

\(\int\limits_a^b {f\left( x \right){\rm{.g}}\left( x \right){\rm{d}}x} = \int\limits_a^b {f\left( x \right){\rm{d}}x.} \int\limits_a^b {g\left( x \right){\rm{d}}x} \) ⇒ Sai

Copyright © 2021 HOCTAP247