Xét \(\int\limits_0^1 {{x^3}{{\left( {{x^2} + 1} \right)}^{2020}}} {\rm{d}}x\), nếu đặt thì \(\int\limits_0^1 {{x^3}{{\left( {{x^2} + 1} \right)}^{2020}}} {\rm{d}}x\) bằng

Câu hỏi :

Xét \(\int\limits_0^1 {{x^3}{{\left( {{x^2} + 1} \right)}^{2020}}} {\rm{d}}x\), nếu đặt \(u = {x^2} + 1\) thì \(\int\limits_0^1 {{x^3}{{\left( {{x^2} + 1} \right)}^{2020}}} {\rm{d}}x\) bằng

A. \(\int\limits_0^1 {\left( {u - 1} \right){u^{2020}}{\rm{d}}u} \)

B. \(\frac{1}{2}\int\limits_1^2 {\left( {u - 1} \right){u^{2020}}{\rm{d}}u} \)

C. \(\int\limits_1^2 {\left( {u - 1} \right){u^{2020}}{\rm{d}}u} \)

D. \(\frac{1}{2}\int\limits_0^1 {\left( {u - 1} \right){u^{2020}}{\rm{d}}u} \)

* Đáp án

B

* Hướng dẫn giải

Xét \(I = \int\limits_0^1 {{x^3}{{\left( {{x^2} + 1} \right)}^{2020}}} {\rm{d}}x\). Đặt \({x^2} + 1 = u \Rightarrow {x^2} = u - 1\). Ta có \(2x{\rm{d}}x = {\rm{d}}u \Rightarrow x{\rm{d}}x = \frac{{{\rm{d}}u}}{2}\).

Đổi cận:

\(\begin{array}{l} x = 0 \Rightarrow u = 1\\ x = 1 \Rightarrow u = 2 \end{array}\).

Vậy \(I = \frac{1}{2}\int\limits_1^2 {\left( {u - 1} \right){u^{2020}}{\rm{d}}u} \).

Copyright © 2021 HOCTAP247