A. 10
B. 11
C. 2020
D. 4
B
Đặt \({\log _2}\left( {4x + 4} \right) = t \Leftrightarrow 4x + 4 = {2^t} \Leftrightarrow x = {2^{t - 2}} - 1\).
Từ điều kiện \(0 \le x \le 2020 \Rightarrow 0 \le {2^{t - 2}} - 1 \le 2020 \Leftrightarrow 1 \le t - 1 \le 1 + {\log _2}2021\).
Theo giả thiết ta có: \(t - 1 + {2^{t - 2}} = y + 1 + {2^y}\left( * \right)\).
Xét hàm số \(f\left( u \right) = u + {2^{u - 1}}\) với \(1 \le u \le 1 + {\log _2}2021\).
Có \(f'\left( u \right) = 1 + {2^{u - 1}}.\ln 2 > 0,\forall u \in \left[ {1;1 + {{\log }_2}2021} \right]\) nên hàm f(u) đồng biến trên đoạn \(\left[ {1;1 + {{\log }_2}2021} \right]\).
Dựa vào \(\left( * \right) \Rightarrow f\left( {t - 1} \right) = f\left( {y + 1} \right) \Leftrightarrow t - 1 = y + 1\).
Mặt khác \(1 \le t - 1 \le 1 + {\log _2}2021 \Rightarrow 1 \le y + 1 \le 1 + {\log _2}2021 \Rightarrow 0 \le y \le {\log _2}2021 \approx 10,98\).
Vì \(y \in Z \Rightarrow y \in \left\{ {0;1;2;3;4;5;6;7;8;9;10} \right\}\).
Vậy có 11 cặp số nguyên thỏa mãn ycbt .
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247