Trong không gian Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng \(d:\frac{{x - 2}}{2} = \frac{{y - 3}}{3} = \frac{{z + 4}}{{ - 5}}\) và \(d':\frac{{x + 1}}{3} =...

Câu hỏi :

Trong không gian Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng \(d:\frac{{x - 2}}{2} = \frac{{y - 3}}{3} = \frac{{z + 4}}{{ - 5}}\) và \(d':\frac{{x + 1}}{3} = \frac{{y - 4}}{{ - 2}} = \frac{{z - 4}}{{ - 1}}.\)

A. \(\frac{x}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 1}}\)

B. \(\frac{x}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 1}}\)

C. \(\frac{{x - 2}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}\)

D. \(\frac{{x - 2}}{2} = \frac{{y + 2}}{2} = \frac{{z - 3}}{2}\)

* Đáp án

B

* Hướng dẫn giải

Gọi \(\Delta \) là đường thẳng cần tìm.

Gọi \(M\left( {2a + 2;3a + 3; - 5a - 4} \right) = \Delta  \cap d,\) \(N\left( {3b - 1; - 2b + 4; - b + 4} \right) = \Delta  \cap d'\).

Ta có: \(\overrightarrow {MN}  = \left( {3b - 2a - 3; - 2b - 3a + 1; - b + 5a + 8} \right)\).

Đường thẳng d có 1 VTCP là \(\overrightarrow {{u_d}}  = \left( {2;3; - 5} \right)\), đường thẳng d’ có 1 VTCP là \(\overrightarrow {{u_{d'}}}  = \left( {3; - 2; - 1} \right)\).

Vì \(\left\{ \begin{array}{l}MN \bot d\\MN \bot d'\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {MN} .\overrightarrow {{u_d}}  = 0\\\overrightarrow {MN} .\overrightarrow {{u_{d'}}}  = 0\end{array} \right.\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}2\left( {3b - 2a - 3} \right) + 3\left( { - 2b - 3a + 1} \right) \\- 5\left( { - b + 5a + 8} \right) = 0\\3\left( {3b - 2a - 3} \right) - 2\left( { - 2b - 3a + 1} \right) \\- 1\left( { - b + 5a + 8} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}5b - 38a - 43 = 0\\14b - 5a - 19 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b = 1\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}M\left( {0;0;1} \right)\\N\left( {2;2;3} \right)\end{array} \right. \\\Rightarrow \overrightarrow {MN}  = \left( {2;2;2} \right)\parallel \left( {1;1;1} \right)\end{array}\)

Vậy phương trình đường thẳng \(\Delta \) là: \(\Delta :\frac{x}{1} = \frac{y}{1} = \frac{{z - 1}}{1}.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 12 năm 2021 - Trường THPT Phú Nhuận

Số câu hỏi: 40

Copyright © 2021 HOCTAP247