A. \(\int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
B. \(\int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \)
C. \(\left| {\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\)
D. \(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \)
A. \(\mathop u\limits^ \to = \left( {7; - 4; - 5} \right)\)
B. \(\mathop u\limits^ \to = \left( {5; - 4; - 7} \right)\)
C. \(\mathop u\limits^ \to = \left( {4;5; - 7} \right)\)
D. \(\mathop u\limits^ \to = \left( {14;8; - 10} \right)\)
A. 9
B. 3
C. \(\sqrt {41} \)
D. 1
A. -2
B. 2i
C. -2i
D. 1
A. \(I\left( { - 1;3;2} \right),\,\,R = 9\)
B. \(I\left( { - 1;3;2} \right),\,\,R = 3\)
C. \(I\left( {1;3;2} \right),\,\,R = 3\)
D. \(I\left( {1; - 3; - 2} \right),\,\,R = 9\)
A. \(2 - i\)
B. \( - 1 - 2i\)
C. \( - 1 + 2i\)
D. \(1 + 2i\)
A. \(\overrightarrow {AB} = \left( { - 4;2;5} \right)\)
B. \(\overrightarrow {AB} = \left( {1;1;\frac{1}{2}} \right)\)
C. \(\overrightarrow {AB} = \left( {2;2;1} \right)\)
D. \(\overrightarrow {AB} = \left( {4; - 2; - 5} \right)\)
A. x + 2y - z + 4 = 0
B. 2x - y - z + 4 = 0
C. 2x + y - z - 4 = 0
D. 2x + y + z - 4 = 0
A. \(4{x^4} + C\)
B. \(12{x^2} + C\)
C. \(\frac{{{x^4}}}{4} + C\)
D. \({x^4} + C\)
A. \(\int {{e^x}dx} = - {e^x} + C\)
B. \(\int {dx} = x + C\)
C. \(\int {\frac{1}{x}dx} = - \ln x + C\)
D. \(\int {\cos xdx} = - \sin x + C\)
A. 2
B. 10
C. 3
D. 4
A. \(\left( S \right):x + y + z + 5 = 0\)
B. \(\left( Q \right):x - 1 = 0\)
C. \(\left( R \right):x + y - 7 = 0\)
D. \(\left( P \right):z - 2 = 0\)
A. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 9\)
B. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 3\)
C. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 3\)
D. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 9\)
A. 4x - 5y - 4 = 0
B. 4x - 5z - 4 = 0
C. 4x - 5y + 4 = 0
D. 4x - 5z + 4 = 0
A. \(z = \frac{2}{5} + \frac{4}{5}i\)
B. \(z = \frac{1}{2} + \frac{1}{2}i\)
C. \(z = \frac{4}{5} + \frac{2}{5}i\)
D. \(z = 1 + \frac{1}{2}i\)
A. y + 2 = 0
B. x + z - 1 = 0
C. y - 2 = 0
D. y + 1 = 0
A. 2
B. \(\frac{4}{3}\)
C. \(\frac{{20}}{3}\)
D. \(\frac{{ - 4}}{3}\)
A. 9
B. -9
C. 5
D. -5
A. \(S = 3\sqrt 2 \)
B. \(S = 2\sqrt 6 \)
C. \(S = 4\sqrt 3 \)
D. \(S = 2\sqrt {14} \)
A. \(d\left( {\left( P \right),\left( Q \right)} \right) = 5\)
B. \(d\left( {\left( P \right),\left( Q \right)} \right) = 3\)
C. \(d\left( {\left( P \right),\left( Q \right)} \right) = 1\)
D. \(d\left( {\left( P \right),\left( Q \right)} \right) = 4\)
A. \(\frac{1}{z} = \frac{1}{4} + \frac{{\sqrt 3 }}{4}i\)
B. \(\frac{1}{z} = \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\)
C. \(\frac{1}{z} = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i\)
D. \(\frac{1}{z} = \frac{1}{4} - \frac{{\sqrt 3 }}{4}i\)
A. \(I = \frac{1}{2}{e^{4038}}\)
B. \(I = \frac{1}{2}{e^{4038}} - 1\)
C. \(I = \frac{1}{2}\left( {{e^{4038}} - 1} \right)\)
D. \(I={e^{4038}} - 1\)
A. I = 0
B. I = 1
C. I = 2019
D. \(I = \frac{1}{{2019}}\)
A. x - y + 1 = 0
B. x - y - 3 = 0
C. x + z - 3 = 0
D. x + y - 3 = 0
A. 20
B. -4
C. 16
D. 4
A. \( - x\cos x - \sin x + C\)
B. \(x\cos x - \sin 2x + C\)
C. \( - x\cos x + \sin x + C\)
D. \(x\cos x - \sin x + C\)
A. \(\left( {2; - 5} \right)\)
B. \(\left( {5;2} \right)\)
C. \(\left( {2;5} \right)\)
D. \(\left( { - 2;5} \right)\)
A. \(\frac{5}{2}\)
B. \(\frac{{21}}{2}\)
C. \(\frac{{26}}{2}\)
D. \(\frac{7}{2}\)
A. \(\Delta :\frac{{x - 2}}{{ - 2}} = \frac{y}{1} = \frac{{z - 1}}{{ - 2}}\)
B. \(\Delta :\frac{{x - 3}}{{ - 2}} = \frac{{y + 2}}{1} = \frac{{z - 5}}{{ - 2}}\)
C. \(\Delta :\frac{{x + 1}}{{ - 2}} = \frac{y}{1} = \frac{{z - 1}}{{ - 2}}\)
D. \(\Delta :\frac{{x - 2}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 2}}\)
A. \(\int {f\left( x \right)dx} = 5{e^{5x - 3}} + C\)
B. \(\int {f\left( x \right)dx} = \frac{1}{5}{e^{5x - 3}} + C\)
C. \(\int {f\left( x \right)dx} = {e^{5x - 3}} + C\)
D. \(\int {f\left( x \right)dx} = - \frac{1}{3}{e^{5x - 3}} + C\)
A. \(x = \frac{{11}}{3},y = - \frac{1}{3}\)
B. \(x = - \frac{{11}}{3},y = \frac{1}{3}\)
C. \(x = 1,y = 3\)
D. \(x = - 1,y = - 3\)
A. \(\frac{{x - 1}}{1} = \frac{y}{1} = \frac{z}{2}\)
B. \(\frac{{x + 1}}{1} = \frac{y}{1} = \frac{z}{2}\)
C. \(\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 2}}{2}\)
D. \(\frac{x}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{2}\)
A. \(B\left( {3; - 4} \right)\)
B. \(B\left( {4;3} \right)\)
C. \(B\left( {3;4} \right)\)
D. \(B\left( {4; - 3} \right)\)
A. -8
B. \(8 + 6i\)
C. 10
D. \( - 8 + 6i\)
A. S = 0
B. \(S = - \frac{3}{2}\)
C. S = 1
D. \(S = \frac{1}{2}\)
A. -3
B. -4
C. 2
D. 4
A. \(\overrightarrow u = \left( { - 5;7;9} \right)\)
B. \(\overrightarrow u = \left( { - 5;7; - 9} \right)\)
C. \(\overrightarrow u = \left( { - 1;3; - 4} \right)\)
D. \(\overrightarrow u = \left( { - 3;7; - 9} \right)\)
A. I = -1
B. \(I = \frac{1}{2}\)
C. \(I =- \frac{1}{2}\)
D. I = 1
A. T = 0
B. T = -1
C. T = -2
D. T = 2
A. \(\frac{x}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 1}}\)
B. \(\frac{x}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 1}}\)
C. \(\frac{{x - 2}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}\)
D. \(\frac{{x - 2}}{2} = \frac{{y + 2}}{2} = \frac{{z - 3}}{2}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247