Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z - 3 = 0\). Vecto nào sau đây không phải là vecto pháp tuyến của mặt phẳng \(\left( P \right)\)?

Câu hỏi :

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z - 3 = 0\). Vecto nào sau đây không phải là vecto pháp tuyến của mặt phẳng \(\left( P \right)\)?

A. \(\overrightarrow {{n_1}}  = \left( {2; - 1;2} \right)\)

B. \(\overrightarrow {{n_2}}  = \left( { - 2;1; - 2} \right)\)

C. \(\overrightarrow {{n_3}}  = \left( {4; - 2;4} \right)\)

D. \(\overrightarrow {{n_4}}  = \left( {6;3;6} \right)\)

* Đáp án

D

* Hướng dẫn giải

Mặt phẳng \(\left( P \right)\)\(:2x - y + 2z - 3 = 0\) có 1 VTPT là \(\overrightarrow n  = \left( {2; - 1;2} \right)\)

Mặt khác ta thấy \(\overrightarrow n  = \left( {2; - 1;2} \right)\) không cùng phương với \(\overrightarrow {{n_4}}  = \left( {6;3;6} \right)\) do đó \(\overrightarrow {{n_4}}  = \left( {6;3;6} \right)\) không là vecto pháp tuyến của \(\left( P \right)\).

Copyright © 2021 HOCTAP247