Trong không gian Oxyz, phương trình đường thẳng đi qua điểm \(A\left( {3;1; - 1} \right)\) và vuông góc với mặt phẳng \(\left( P \right):\,\,2x - y + 2z - 5 = 0\)

Câu hỏi :

Trong không gian Oxyz, phương trình đường thẳng đi qua điểm \(A\left( {3;1; - 1} \right)\) và vuông góc với mặt phẳng \(\left( P \right):\,\,2x - y + 2z - 5 = 0\)

A. \(\dfrac{{x + 3}}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z - 1}}{2}\)

B. \(\dfrac{{x - 2}}{3} = \dfrac{{y + 1}}{1} = \dfrac{{z - 2}}{{ - 1}}\)

C. \(\dfrac{{x - 3}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z + 1}}{2}\)

D. \(\dfrac{{x - 3}}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z + 1}}{2}\)

* Đáp án

D

* Hướng dẫn giải

Mặt phẳng \(\left( P \right):2x - y + 2z - 5 = 0\) có 1 VTPT là \(\overrightarrow {{n_P}}  = \left( {2; - 1;2} \right)\).

Gọi \(\overrightarrow {{u_d}} \) là 1 VTCP của đường thẳng d. Vì \(d \bot \left( P \right) \Rightarrow \overrightarrow {{u_d}}  = \overrightarrow {{n_P}}  = \left( {2; - 1;2} \right)\).

Vậy phương trình đường thẳng d đi qua \(A\left( {3;1; - 1} \right)\) và có 1 VTCP \(\overrightarrow {{u_d}}  = \left( {2; - 1;2} \right)\) là: \(\dfrac{{x - 3}}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z + 1}}{2}.\)

Copyright © 2021 HOCTAP247