A. a - b
B. b - a
C. a + b
D. -a - b
A
Đặt \(I = \int\limits_1^2 {\left( {x - 1} \right)f'\left( x \right)dx} \)
Đặt \(\left\{ \begin{array}{l}u = x - 1\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = f\left( x \right)\end{array} \right.\)
Khi đó ta có: \(I = \left. {\left( {x - 1} \right)f\left( x \right)} \right|_1^2 - \int\limits_1^2 {f\left( x \right)dx} \)\(= f\left( 2 \right) - \int\limits_1^2 {f\left( x \right)dx} \)
Mà \(I = b;\,\,f\left( 2 \right) = a\,\,\left( {gt} \right)\) nên \(\int\limits_1^2 {f\left( x \right)dx} = a - b.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247