Cho \(\int\limits_0^3 {f\left( {{x^2}} \right)xdx = 3} \).Khi đó giá trị của \(\int\limits_0^9 {f\left( x \right)dx} \) là:

Câu hỏi :

Cho \(\int\limits_0^3 {f\left( {{x^2}} \right)xdx = 3} \).Khi đó giá trị của \(\int\limits_0^9 {f\left( x \right)dx} \) là:

A. 6

B. 9

C. 12

D. 3

* Đáp án

A

* Hướng dẫn giải

Ta có \(\int\limits_0^3 {f\left( {{x^2}} \right)xdx}  = 3\)

Đặt \({x^2} = t\)\( \Rightarrow 2xdx = dt \Leftrightarrow xdx = \frac{1}{2}dt\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 3 \Rightarrow y = 9\end{array} \right.\).

Khi đó \(3 = \frac{1}{2}\int\limits_0^9 {f\left( t \right).dt} \)\( \Rightarrow 6 = \int\limits_0^9 {f\left( t \right)dt}  = \int\limits_0^9 {f\left( x \right)dx} \)

Copyright © 2021 HOCTAP247