Biết \(\int {\frac{{4x - 3}}{{2{x^2} - 3x - 2}}dx} \)\(= \ln \left| {x - a} \right| + b\ln \left| {cx + 1} \right| + C \). Khi đó \(a + b - c\) bằng:

Câu hỏi :

Biết \(\int {\frac{{4x - 3}}{{2{x^2} - 3x - 2}}dx} \)\(= \ln \left| {x - a} \right| + b\ln \left| {cx + 1} \right| + C \). Khi đó \(a + b - c\) bằng:

A. 5

B. 1

C. - 2

D. -3

* Đáp án

B

* Hướng dẫn giải

Ta có

\(\begin{array}{l}I = \int {\frac{{4x - 3}}{{2{x^2} - 3x - 2}}dx} \\ = \int {\frac{{2\left( {x - 2} \right) + 2x + 1}}{{\left( {x - 2} \right)\left( {2x + 1} \right)}}dx} \\\,\,\, = \int {\left( {\frac{1}{{x - 2}} + \frac{2}{{2x + 1}}} \right)dx} \\ = \ln \left| {x - 2} \right| + \ln \left| {2x + 1} \right| + C\end{array}\)

Mà \(a = 2;\,\,b = 1;\,\,c = 2.\)

Vậy \(a + b - c = 2 + 1 - 2 = 1.\)

Copyright © 2021 HOCTAP247