Diện tích của hình phẳg giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường th�

Câu hỏi :

Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường thẳng \(x = 1;\) \(x = 2\) bằng

A. \(\frac{7}{3}.\)

B. \(\frac{2}{3}.\)

C. \(\frac{3}{2}.\)

D. \(\frac{1}{3}.\)

* Đáp án

B

* Hướng dẫn giải

Xét phương trình hoành độ giao điểm: \({\left( {x - 2} \right)^2} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x - 2 = 1\\x - 2 =  - 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\).

Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường thẳng \(x = 1,x = 2\) bằng: \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx} \)\( = \int\limits_1^2 {\left( { - {x^2} + 4x - 3} \right)dx}  = \frac{2}{3}.\)

Copyright © 2021 HOCTAP247