A. \(\sqrt {41} \)
B. 7
C. 49
D. \(\sqrt 7 \)
A. \(F\left( x \right) = 10{\left( {2x + 3} \right)^4} + C.\)
B. \(F\left( x \right) = 5{\left( {2x + 3} \right)^4} + C.\)
C. \(F\left( x \right) = \frac{{{{\left( {2x + 3} \right)}^6}}}{{12}} + C.\)
D. \(F\left( x \right) = \frac{{{{\left( {2x + 3} \right)}^6}}}{6} + C.\)
A. \(\left( {2; - 1} \right).\)
B. \(\left( {2;1} \right).\)
C. \(\left( {1;2} \right).\)
D. \(\left( { - 2;1} \right).\)
A. \(z = \frac{{14}}{5} + \frac{8}{5}i.\)
B. \(z = 4 - 2i.\)
C. \(z = 4 + 2i.\)
D. \(z = \frac{{14}}{5} - \frac{8}{5}i.\)
A. \(\int\limits_a^b {\left| {f\left( x \right) + g\left( x \right)} \right|dx} \)
B. \(\int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
C. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \)
D. \(\left| {\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} } \right|.\)
A. \(\frac{{{e^2} + 1}}{2}\)
B. \(\frac{1}{2}\)
C. \( - \frac{1}{2}\)
D. \(\frac{{{e^2} - 1}}{2}\)
A. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 25.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 5.\)
C. \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 25.\)
D. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 25.\)
A. 6
B. 12
C. 9
D. 5
A. \(\overrightarrow n = \left( {2; - 1;1} \right)\).
B. \(\overrightarrow n = \left( {2;0; - 1} \right)\)
C. \(\overrightarrow n = \left( {2;0;1} \right)\)
D. \(\overrightarrow n = \left( {2;1; - 1} \right)\)
A. \(\frac{7}{3}.\)
B. \(\frac{2}{3}.\)
C. \(\frac{3}{2}.\)
D. \(\frac{1}{3}.\)
A. 1
B. 9
C. 5
D. -3
A. m = 5
B. m = 1
C. \(m = \frac{7}{2}.\)
D. m = 2
A. \(\left( {2;2;6} \right)\)
B. \(\left( {0; - 4; - 4} \right)\)
C. \(\left( {0; - 2; - 2} \right)\)
D. \(\left( {1;1;3} \right)\)
A. \({z^2} - 3z - 4 = 0\)
B. \({z^2} + 3z + 4 = 0\)
C. \({z^2} - 3z + 4 = 0\)
D. \({z^2} + 3z - 4 = 0\)
A. \(F\left( x \right) = - \frac{1}{2}\cos 2x + C.\)
B. \(F\left( x \right) = - \cos 2x + C.\)
C. \(F\left( x \right) = - 2\cos 2x + C.\)
D. \(F\left( x \right) = \frac{1}{2}\cos 2x + C.\)
A. \(\left\{ \begin{array}{l}x = 2 + 2t\\y = - 3t\\z = - 1 + t\end{array} \right.\)
B. \(\left\{ \begin{array}{l}x = 4 + 2t\\y = - 6\\z = 2 - t\end{array} \right.\)
C. \(\left\{ \begin{array}{l}x = - 2 + 2t\\y = - 3t\\z = 2 - t\end{array} \right.\)
D. \(\left\{ \begin{array}{l}x = - 2 + 4t\\y = - 6t\\z = 1 + 2t\end{array} \right.\)
A. \(\frac{{2\pi }}{3}.\)
B. \(\frac{{4\pi }}{3}.\)
C. \(\frac{{8\pi }}{{15}}.\)
D. \(\frac{{16\pi }}{{15}}.\)
A. -9
B. 9
C. 1
D. 7
A. 1
B. \(\frac{{11}}{3}\)
C. 3
D. \(\frac{1}{3}\)
A. \(I\left( { - 4;1;0} \right);\,\,R = 4.\)
B. \(I\left( {8; - 2;0} \right);\,\,R = 2\sqrt 7 .\)
C. \(I\left( {4; - 1;0} \right);\,\,R = 4.\)
D. \(I\left( {4; - 1;0} \right);\,\,R = 16.\)
A. 27
B. 45
C. 21
D. 18
A. \( - 4{x^2} + 3x + C.\)
B. \( - 4{x^2} + 2x + C.\)
C. \(4{x^2} + 2x + C.\)
D. \( - 4{x^2} + x + C.\)
A. 10
B. 11
C. 8
D. 9
A. \(2{\rm{x}} - z + 2 = 0\).
B. \(2x - z = 0\).
C. \(2x + z = 0\).
D. \(2x + y - z = 0.\)
A. 3
B. 2
C. 4
D. 5
A. 6
B. 4
C. 2
D. 3
A. 2
B. 1
C. 3
D. 4
A. \(\frac{{6\sqrt {41} }}{{41}}\)
B. \(\frac{{4\sqrt {41} }}{{41}}\)
C. \(\frac{{24\sqrt {41} }}{{41}}\)
D. \(\frac{{12\sqrt {41} }}{{41}}\)
A. x + y + z = 0
B. x + y - z = 0
C. x - y + z = 1
D. x + y - z = 1
A. \(OM = \sqrt {35} \)
B. \(OM = 2\sqrt {35} \)
C. \(OM = \frac{{\sqrt {14} }}{2}\)
D. \(OM = \sqrt 5 \)
A. \(S = \pi \int\limits_0^4 {{3^{2x}}dx} \)
B. \(S = \int\limits_0^4 {\left( { - {3^x}} \right)dx} \)
C. \(S = \int\limits_0^4 {{3^x}dx} \)
D. \(S = \pi \int\limits_0^4 {{3^x}dx} \)
A. \(\sqrt 5 \)
B. \(\sqrt {10} \)
C. 1
D. \(\sqrt 2 \)
A. -5
B. 5
C. 2
D. 1
A. -3
B. 11
C. 6
D. 9
A. \(\frac{5}{{21}}.\)
B. 1
C. \(\frac{1}{3}.\)
D. \(\frac{{11}}{4}.\)
A. 5
B. 2
C. 7
D. -1
A. 1
B. 0
C. 2
D. 4
A. x + y + 6z - 2 = 0
B. 3x + y + 2z - 3 = 0
C. 5x + y - 2z - 4 = 0
D. 2x - 4z - 1 = 0
A. 4
B. 10
C. 7
D. 12
A. I = 3
B. I = 2
C. I = 8
D. I = 4
A. \(M\left( {0;0; - 3} \right)\)
B. \(M\left( {0;0;3} \right)\)
C. \(M\left( {0;0; - 4} \right)\)
D. \(M\left( {0;0;4} \right)\)
A. \(I = \left. {{x^2}\sin x} \right|_0^\pi - \int\limits_0^\pi {x.\sin xdx} \)
B. \(I = \left. {{x^2}.\sin x} \right|_0^\pi + 2\int\limits_0^\pi {x.\sin xdx} \)
C. \(I = \left. {{x^2}\sin x} \right|_0^\pi - 2\int\limits_0^\pi {x.\sin xdx} \)
D. \(I = \left. {{x^2}\sin x} \right|_0^\pi + \int\limits_0^\pi {x.\sin xdx} \)
A. \(\left( {2;4; - 2} \right)\)
B. \(\left( { - 2;2;4} \right)\)
C. \(\left( { - 1;1;2} \right)\)
D. \(\left( { - 2; - 4;2} \right)\)
A. \(\left| z \right| = 5\)
B. \(\left| z \right| = \sqrt 5 \)
C. \(\left| z \right| = 3\)
D. \(\left| z \right| = 2\)
A. \(V = \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
B. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} dx} \)
C. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
D. \(V = \int\limits_0^1 {\sqrt {2x + 1} dx} \)
A. \(\frac{{4000}}{3}\,\,\left( m \right)\)
B. \(500\,\,\left( m \right)\)
C. \(\frac{{2500}}{3}\,\,\left( m \right)\)
D. \(2000\,\,\left( m \right)\)
A. 8
B. \(\frac{5}{2}\)
C. 10
D. 4
A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)
B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)
C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)
D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)
A. \(S = \frac{{1075}}{{192}}\)
B. \(S = \frac{{135}}{{64}}\)
C. \(S = \frac{{185}}{{24}}\)
D. \(S = \frac{{335}}{{96}}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247