Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y - 2z - 2 = 0\) và điểm \(I\left( {1;2; - 3} \right)\). Bán kính của mặt cầu có tâm \(I\) và tiếp xúc với mặt...

Câu hỏi :

Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y - 2z - 2 = 0\) và điểm \(I\left( {1;2; - 3} \right)\). Bán kính của mặt cầu có tâm \(I\) và tiếp xúc với mặt phẳng \(\left( P \right)\) bằng:

A. 1

B. \(\frac{{11}}{3}\)

C. 3

D. \(\frac{1}{3}\)

* Đáp án

C

* Hướng dẫn giải

Vì mặt cầu tâm I tiếp xúc với mặt phẳng \(\left( P \right)\) nên \(R = d\left( {I;\left( P \right)} \right).\)

Ta có \(d\left( {I;\left( P \right)} \right) = \frac{{\left| {1 + 2.2 - 2.\left( { - 3} \right) - 2} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} }}\)\( = \frac{9}{3} = 3\)

Vậy bán kính mặt cầu cần tìm là \(R = 3\).

Copyright © 2021 HOCTAP247