A. \(OM = \sqrt {35} \)
B. \(OM = 2\sqrt {35} \)
C. \(OM = \frac{{\sqrt {14} }}{2}\)
D. \(OM = \sqrt 5 \)
D
Gọi \(A \in {d_1}:\frac{{x - 2}}{1} = \frac{{y - 4}}{1} = \frac{z}{{ - 2}}\)\( \Rightarrow A\left( {a + 2;a + 4; - 2a} \right)\)
\(B \in {d_2}:\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 2}}{{ - 1}}\)\( \Rightarrow B\left( {2b + 3; - b - 1; - b - 2} \right)\)
Khi đó \(\overrightarrow {AB} = \left( {2b - a + 1; - b - a - 5; - b + 2a - 2} \right)\)
Mà \(\overrightarrow {AB} \bot \overrightarrow {{n_1}} = \left( {1;1; - 2} \right)\) và \(\overrightarrow {AB} \bot \overrightarrow {{n_2}} = \left( {2; - 1; - 1} \right)\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}2b - a + 1 - b - a - 5 -\\2\left( { - b + 2a - 2} \right) = 0\\2\left( {2b - a + 1} \right) + b + a + 5 + b\\ - 2a + 2 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 6a + 3b = 0\\ - 3a + 6b + 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = - 2\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}A\left( {1;3;2} \right)\\B\left( { - 1;1;0} \right)\end{array} \right.\end{array}\)
Vậy trung điểm M của AB là \(M\left( {0;2;1} \right) \Rightarrow OM = \sqrt 5 .\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247