Gọi z là một nghiệm của phương trình \({z^2} - z + 1 = 0\). Giá trị của biểu thức \(M = {z^{2019}} + {z^{2018}} + \frac{1}{{{z^{2019}}}} + \frac{1}{{{z^{2018}}}} + 5\) bằng

Câu hỏi :

Gọi z là một nghiệm của phương trình \({z^2} - z + 1 = 0\). Giá trị của biểu thức  \(M = {z^{2019}} + {z^{2018}} + \frac{1}{{{z^{2019}}}} + \frac{1}{{{z^{2018}}}} + 5\) bằng

A. 5

B. 2

C. 7

D. -1

* Đáp án

B

* Hướng dẫn giải

Ta có \({z^2} - z + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}z = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i\\z = \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\end{array} \right.\).

Chọn 1 nghiệm của phương trình trên là \(z = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i\), ta có \({z^3} =  - 1\).

Ta có:

\(\begin{array}{l}{z^{2019}} = {\left( {{z^3}} \right)^{673}} = {\left( { - 1} \right)^{673}} =  - 1\\{z^{2018}} = {\left( {{z^3}} \right)^{672}}.{z^2}\\ = {\left( { - 1} \right)^{672}}.{\left( {\frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right)^2}\\ =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i\end{array}\)

Vậy

\(\begin{array}{l}M =  - 1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i + \frac{1}{{ - 1}} + \frac{1}{{ - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i}} + 5\\M =  - 1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i + \frac{1}{{ - 1}} - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i + 5\\M = 2.\end{array}\) 

Copyright © 2021 HOCTAP247