Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 4\) và điểm \(M\left( {3;1;2} \right)\). Điểm A di chuyển tr...

Câu hỏi :

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 4\) và điểm \(M\left( {3;1;2} \right)\). Điểm A di chuyển trên mặt cầu \(\left( S \right)\) thỏa mãn \(\overrightarrow {OA} .\overrightarrow {MA}  =  - 3\) thì A thuộc mặt phẳng nào trong các mặt phẳng sau?

A. x + y + 6z - 2 = 0

B. 3x + y + 2z - 3 = 0

C. 5x + y - 2z - 4 = 0

D. 2x - 4z - 1 = 0

* Đáp án

A

* Hướng dẫn giải

Gọi \(A\left( {a;b;c} \right)\)

\( \Rightarrow \overrightarrow {OA}  = \left( {a;b;c} \right);\)\(\overrightarrow {MA}  = \left( {a - 3;b - 1;c - 2} \right)\)

Khi đó ta có:

\(\begin{array}{l}\overrightarrow {OA} .\overrightarrow {MA}  = a\left( {a - 3} \right) + b\left( {b - 1} \right) + c\left( {c - 2} \right)\\ \Leftrightarrow {a^2} + {b^2} + {c^2} - 3a - b - 2c =  - 3\,\,\,\left( 1 \right)\end{array}\)

Mà \(A \in \left( S \right)\)

\(\begin{array}{l} \Rightarrow {\left( {a - 1} \right)^2} + {b^2} + {\left( {c + 2} \right)^2} = 4\\ \Leftrightarrow {a^2} + {b^2} + {c^2} - 2a + 4c =  - 1\,\,\,\left( 2 \right)\end{array}\)

Trừ vế theo vế của (2) cho (1) ta có: \(a + b + 6c = 2\)\( \Leftrightarrow a + b + 6c - 2 = 0\)

Vậy điểm A thuộc mặt phẳng \(x + y + 6z - 2 = 0.\)

Copyright © 2021 HOCTAP247