A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)
B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)
C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)
D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)
D
Gọi \(\overrightarrow {{u_1}} = \left( { - 2;1;0} \right)\) và \(\overrightarrow {{u_2}} = \left( {0;1; - 1} \right)\) lần lượt là 1 VTCP của \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\).
Gọi AB là đoạn vuông góc chung của \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\), với \(A\left( {4 - 2t;t;3} \right) \in {d_1}\), \(B\left( {1;t'; - t'} \right) \in {d_2}\).
Ta có: \(\overrightarrow {AB} = \left( { - 3 + 2t;\,\,t' - t;\,\, - t' - 3} \right)\).
Vì AB là đoạn vuông góc chung của \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) nên \(\left\{ \begin{array}{l}AB \bot {d_1}\\AB \bot {d_2}\end{array} \right.\).
\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AB} .\overrightarrow {{u_1}} = 0\\\overrightarrow {AB} .\overrightarrow {{u_2}} = 0\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}\left( {2t - 3} \right).\left( { - 2} \right) + t' - t = 0\\t' - t + t' + 3 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}t = 1\\t' = - 1\end{array} \right.\)
\( \Rightarrow A\left( {2;1;3} \right),\,\,B\left( {1; - 1;1} \right)\).
Mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) nhận AB là đường kính.
\( \Rightarrow \) Tâm mặt cầu là trung điểm của AB, có tọa độ \(I\left( {\frac{3}{2};0;2} \right)\), bán kính \(R = IA = \sqrt {\frac{1}{4} + 1 + 1} = \frac{3}{2}\).
Vậy phương trình mặt cầu cần tìm là: \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247