Họ nguyên hàm của hàm số \(f\left( x \right) = x\sin x\)

Câu hỏi :

Họ nguyên hàm của hàm số \(f\left( x \right) = x\sin x\) là

A. \(F\left( x \right) = x\cos x + \sin x + C.\)  

B. \(F\left( x \right) = x\cos x - \sin x + C.\)

C. \(F\left( x \right) =  - x\cos x - \sin x + C.\)

D. \(F\left( x \right) =  - x\cos x + \sin x + C.\)

* Đáp án

D

* Hướng dẫn giải

Ta có \(\int {f\left( x \right)dx = \int {x\sin x} dx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = \sin xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \cos x\end{array} \right.\)

Khi đó \(\int {f\left( x \right) =  - x\cos x + \int {\cos xdx}  + C} \)\( =  - x\cos x + \sin x + C\)

Copyright © 2021 HOCTAP247