Cho hàm số \(f\left( x \right)\) liên tục, có đạo hàm trên \(\mathbb{R}\), \(f\left( 2 \right) = 16\) và \(\int\limits_0^8 {f\left( x \right)dx = 4} \). Tích phân \(\int\limits_0^4...

Câu hỏi :

Cho hàm số \(f\left( x \right)\) liên tục, có đạo hàm trên \(\mathbb{R}\), \(f\left( 2 \right) = 16\) và \(\int\limits_0^8 {f\left( x \right)dx = 4} \). Tích phân \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} \) bằng:

A. 112

B. 12

C. 56

D. 144

* Đáp án

A

* Hướng dẫn giải

Gọi \(I = \int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = f'\left( {\frac{x}{2}} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = 2f\left( {\frac{x}{2}} \right)\end{array} \right.\)

\(\begin{array}{l} \Rightarrow I = \left. {2xf\left( {\frac{x}{2}} \right)} \right|_0^4 - 2\int\limits_0^4 {f\left( {\frac{x}{2}} \right)dx} \\ \Leftrightarrow I = 8f\left( 2 \right) - 4\int\limits_0^4 {f\left( {\frac{x}{2}} \right)d\left( {\frac{x}{2}} \right)} \\ \Leftrightarrow I = 8.16 - 4\int\limits_0^8 {f\left( x \right)dx} \\ \Leftrightarrow I = 128 - 4.4 = 112.\end{array}\)

Copyright © 2021 HOCTAP247