Trong không gian Oxyz, cho đường thẳg \({d_1}:\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{{z - 3}}{1}\) và điểm \(A\left( {1;0

Câu hỏi :

Trong không gian Oxyz, cho đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{{z - 3}}{1}\) và điểm \(A\left( {1;0; - 1} \right)\). Gọi \({d_2}\) là đường thẳng đi qua  A và có vecto chỉ phương \(\overrightarrow u  = \left( {a;1;2} \right)\). Giá trị của a sao cho đường thẳng \({d_1}\) cắt đường thẳng \({d_2}\) là

A. a = -1

B. a = 2

C. a = 0

D. a = 1

* Đáp án

C

* Hướng dẫn giải

Đường thẳng \({d_1}\) có 1 VTCP là \(\overrightarrow {{u_1}}  = \left( {1; - 2;1} \right)\) và đi qua điểm \(M\left( {1;2;3} \right)\).

Ta có: \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow u } \right] = \left( { - 5;a - 2;1 + 2a} \right)\) và \(\overrightarrow {AM}  = \left( {0;2;4} \right)\).

Để \({d_1},\,\,{d_2}\) cắt nhau thì  \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {AM}  = 0\).

\(\begin{array}{l} \Leftrightarrow  - 5.0 + \left( {a - 2} \right).2 + \left( {1 - 2a} \right).4 = 0\\ \Leftrightarrow 2a - 4 + 4 - 8a = 0\\ \Leftrightarrow a = 0.\end{array}\)

Copyright © 2021 HOCTAP247