Hàm số nào sau đây luôn đồng biến trên từng khoảng xác định của nó?

Câu hỏi :

Hàm số nào sau đây luôn đồng biến trên từng khoảng xác định của nó?

A. \(y = \dfrac{{3x + 10}}{{5x + 7}}\)

B. \(y = \dfrac{{ - x + 1}}{{5x - 3}}\)

C. \(y = \dfrac{{ - x - 8}}{{x + 3}}\)

D. \(y = \dfrac{{3x + 5}}{{x + 1}}\)

* Đáp án

C

* Hướng dẫn giải

Đáp án A:

\(\begin{array}{l}y' = \dfrac{{3\left( {5x + 7} \right) - 5\left( {3x + 10} \right)}}{{{{\left( {5x + 7} \right)}^2}}}\\ =  - \dfrac{{29}}{{{{\left( {5x + 7} \right)}^2}}} < 0\left( L \right)\end{array}\)

Đáp án B:

\(\begin{array}{l}y' = \dfrac{{ - 1\left( {5x - 3} \right) - 5\left( { - x + 1} \right)}}{{{{\left( {5x - 3} \right)}^2}}}\\ =  - \dfrac{2}{{{{\left( {5x - 3} \right)}^2}}} < 0\left( L \right)\end{array}\)

Đáp án C:

\(\begin{array}{l}y' = \dfrac{{ - 1\left( {x + 3} \right) - \left( { - x - 8} \right)}}{{{{\left( {x + 3} \right)}^2}}}\\ = \dfrac{5}{{{{\left( {x + 3} \right)}^2}}} > 0\left( {TM} \right)\end{array}\)

Đáp án D:

\(\begin{array}{l}y' = \dfrac{{3\left( {x + 1} \right) - \left( {3x + 5} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\ =  - \dfrac{2}{{{{\left( {x + 1} \right)}^2}}} < 0\left( L \right)\end{array}\)

Copyright © 2021 HOCTAP247