Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Phạm Hồng Thái Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) với \(a,\,\,b,\,\,c,\,\,d\) là các...

Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) với \(a,\,\,b,\,\,c,\,\,d\) là các số thực, \(a\ne 0\) có đồ thị như hình bên. Có bao nhiêu số nguyên m thuộc khoản...

Câu hỏi :

Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) với \(a,\,\,b,\,\,c,\,\,d\) là các số thực, \(a\ne 0\) có đồ thị như hình bên.

A. 2012

B. 2013

C. 4028

D. 4026

* Đáp án

A

* Hướng dẫn giải

Ta có \({g}'(x)=(3{{x}^{2}}-6x){f}'({{x}^{3}}-3x+m)\).

Với mọi \(x\in (2;+\infty )\) ta có \(3{{x}^{2}}-6x>0\) nên hàm số \(g(x)=f\left( {{x}^{3}}-3{{x}^{2}}+m \right)\) nghịch biến trên khoảng \(\left( 2;+\infty  \right) \Leftrightarrow  {f}'({{x}^{3}}-3{{x}^{2}}+m)\le 0,\forall x\in (2;+\infty )\).

Dựa vào đồ thị ta có hàm số y=f(x) nghịch biến trên các khoảng \((-\infty ;1)\) và \((3;+\infty )\) nên \({f}'(x)\le 0\) với \(x\in \left( -\infty ;1 \right]\cup \left[ 3;+\infty  \right)\).

Do đó \(f'({x^3} - 3{x^2} + m) \le 0,\forall x \in (2; + \infty )\)

\( \Leftrightarrow \left[ \begin{array}{l} {x^3} - 3{x^2} + m \le 1,\forall x \in (2; + \infty )\\ {x^3} - 3{x^2} + m \ge 3,\forall x \in (2; + \infty ) \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l} m \le - {x^3} + 3{x^2} + 1,\forall x \in (2; + \infty )\\ m \ge - {x^3} + 3{x^2} + 3,\forall x \in (2; + \infty ) \end{array} \right.\)

Nhận thấy \(\mathop {\lim }\limits_{x \to  + \infty } ( - {x^3} + 3{x^2} + 1) =  - \infty \) nên trường hợp \(m \le  - {x^3} + 3{x^2} + 1,\forall x \in (2; + \infty )\) không xảy

ra.

Trường hợp: \(m \ge  - {x^3} + 3{x^2} + 3,\forall x \in (2; + \infty )\). Ta có hàm số \(h(x) =  - {x^3} + 3{x^2} + 3\) liên tục trên \(\left[ {2; + \infty } \right)\) và \(h'(x) =  - 3{x^2} + 6x < 0,\forall x \in (2; + \infty )\) nên h(x) nghịch biến trên \(\left[ {2; + \infty } \right)\) suy ra \(\mathop {\max }\limits_{\left[ {2; + \infty } \right)} h(x) = h(2)\).

Do đó \(m \ge  - {x^3} + 3{x^2} + 3,\forall x \in (2; + \infty )\)

\( \Leftrightarrow m \ge \mathop {\max }\limits_{\left[ {2; + \infty } \right)} h(x) = h(2)\)

\( \Leftrightarrow m \ge 7\)

Do m nguyên thuộc khoảng ( - 2019;2019) nên \(m \in \left\{ {7;8;9;...;2018} \right\}\).

Vậy có 2012 số nguyên m thỏa mãn yêu cầu bài toán.

Copyright © 2021 HOCTAP247