Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \(AB=BC=\frac{1}{2}AD=a\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ACD...

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \(AB=BC=\frac{1}{2}AD=a\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ACD.

A. \({V_{S.ACD}} = \frac{{{a^3}}}{3}\)

B. \({V_{S.ACD}} = \frac{{{a^3}}}{2}\)

C. \({V_{S.ACD}} = \frac{{{a^3}\sqrt 2 }}{6}\)

D. \({V_{S.ACD}} = \frac{{{a^3}\sqrt 3 }}{6}\)

* Đáp án

D

* Hướng dẫn giải

Ta chứng minh được tam giác ACD vuông cân tại C và \(CA=CD=a\sqrt{2}\), suy ra \({{S}_{\Delta ACD}}={{a}^{2}}\)

Gọi H là trung điểm của AB vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, suy ra \(SH\bot \left( ABCD \right)\) và \(SH=\frac{a\sqrt{3}}{2}\).

Vậy \({{S}_{S.ACD}}=\frac{{{a}^{3}}\sqrt{3}}{6}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Sơn Hà

Số câu hỏi: 50

Copyright © 2021 HOCTAP247