A. \(0 \le P(A) \le 1\)
B. \(P(A) \ge 1\)
C. 0 < P(A) < 1
D. \(P(A) \ge 0\)
A. d = 4
B. d = 3
C. d = -3
D. d = 5
A. \( - \infty \)
B. 0
C. \( + \infty \)
D. -3
A. 30
B. 520
C. 240
D. 120
A. \(\left( { - \infty ;1} \right)\)
B. \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)
C. \(\left( {1; + \infty } \right)\)
D. R
A. \(\mathop {\min }\limits_{x \in \left[ {0;2} \right]} y = - \frac{5}{3}\)
B. \(\mathop {\min }\limits_{x \in \left[ {0;2} \right]} y = - \frac{1}{3}\)
C. \(\mathop {\min }\limits_{x \in \left[ {0;2} \right]} y = - 2\)
D. \(\mathop {\min }\limits_{x \in \left[ {0;2} \right]} y = - 10\)
A. AB = 3
B. \(AB = 2\sqrt 2 \)
C. AB = 2
D. AB = 1
A. (0;0) hoặc (1;-2)
B. (0;0) hoặc (2;4)
C. (0;0) hoặc (2;-4)
D. (0;0) hoặc (-2;-4)
A. x = 1
B. x = -2
C. x = -1
D. x = 2
A. \({M_1}\left( {1; - 1} \right);{M_2}\left( {7;5} \right)\)
B. \({M_1}\left( {1;1} \right);{M_2}\left( { - 7;5} \right)\)
C. \({M_1}\left( { - 1;1} \right);{M_2}\left( {7;5} \right)\)
D. \({M_1}\left( {1;1} \right);{M_2}\left( {7; - 5} \right)\)
A. 0,8m
B. 1,2m
C. 2m
D. 2,4m
A. \({a^{\frac{7}{3}}}\)
B. \({a^{\frac{5}{7}}}\)
C. \({a^{\frac{1}{6}}}\)
D. \({a^{\frac{5}{3}}}\)
A. \(\frac{{11\sqrt 2 }}{2}.\)
B. \(\sqrt 2 \)
C. \(- \frac{{\sqrt 2 }}{2}.\)
D. \(3\sqrt 2 .\)
A. y’ = 5x.ln5
B. y' = \(\frac{{{5^x}}}{{\ln 5}}.\)
C. y’ = x.5x-1
D. y’ =5x.
A. \({x_1} + {x_2} = - 2\)
B. \({x_1}.{x_2} = - 1\)
C. \({x_1} + 2{x_2} = - 1\)
D. \(2{x_1} + {x_2} = 0\)
A. \(D = \left( { - 2;1} \right)\)
B. \(D = \left( { - 2; + \infty } \right)\)
C. \(D = \left( {1; + \infty } \right)\)
D. \(D = \left( { - 2; + \infty } \right)\backslash \left\{ 1 \right\}\)
A. \(y = - {2^x}\)
B. \(y = - {3^x}\)
C. \(y = {x^2} - 1\)
D. \(y = {2^x} - 3\)
A. m = 4
B. m = 2
C. m = 1
D. m = 3
A. \({\log _{15}}20 = \frac{{a\left( {1 + a} \right)}}{{b\left( {a + b} \right)}}\)
B. \({\log _{15}}20 = \frac{{b\left( {1 + a} \right)}}{{a\left( {1 + b} \right)}}\)
C. \({\log _{15}}20 = \frac{{b\left( {1 + b} \right)}}{{a\left( {1 + a} \right)}}\)
D. \({\log _{15}}20 = \frac{{a\left( {1 + b} \right)}}{{b\left( {1 + a} \right)}}\)
A. \({\log _a}{b^\alpha } = \alpha {\log _a}b\)
B. \({\log _{{a^\alpha }}}b = \frac{1}{\alpha }{\log _a}b\)
C. \({a^{\alpha {{\log }_a}b}} = \alpha b\)
D. \({a^{\alpha {{\log }_a}b}} = {b^\alpha }\)
A. 32.412.582 đồng
B. 35.412.582 đồng
C. 33.412.582 đồng
D. 34.412.582 đồng
A. \(\int {f\left( x \right)dx} = {\left( {2x + 1} \right)^2} + C\)
B. \(\int {f\left( x \right)dx} = \frac{1}{4}{\left( {2x + 1} \right)^2} + C\)
C. \(\int {f\left( x \right)dx} = \frac{1}{2}{\left( {2x + 1} \right)^2} + C\)
D. \(\int {f\left( x \right)dx} = 2{\left( {2x + 1} \right)^2} + C\)
A. \(\int {f\left( x \right)dx} = \frac{x}{4}\left( {\ln 4x - 1} \right) + C\)
B. \(\int {f\left( x \right)dx} = \frac{x}{2}\left( {\ln 4x - 1} \right) + C\)
C. \(\int {f\left( x \right)dx} = x\left( {\ln 4x - 1} \right) + C\)
D. \(\int {f\left( x \right)dx} = 2x\left( {\ln 4x - 1} \right) + C\)
A. 29
B. 5
C. 19
D. 9
A. 1
B. 0
C. 4
D. 2
A. \(2\ln \frac{3}{2} - 1\)
B. \(5\ln \frac{3}{2} - 1\)
C. \(3\ln \frac{3}{2} - 1\)
D. \(3\ln \frac{5}{2} - 1\)
A. \(S = \frac{1}{6}\)
B. S = 3
C. S = 2
D. \(S = \frac{1}{2}\)
A. \(\frac{\pi }{6}\left( {4\ln \frac{3}{2} - 1} \right)\)
B. \(\frac{\pi }{4}\left( {6\ln \frac{3}{2} - 1} \right)\)
C. \(\frac{\pi }{6}\left( {9\ln \frac{3}{2} - 1} \right)\)
D. \(\frac{\pi }{9}\left( {6\ln \frac{3}{2} - 1} \right)\)
A. 3 - i
B. 3 + i
C. 3 - 5i
D. 3 + 5i
A. 2
B. 3
C. \(\sqrt 2 \)
D. \(\sqrt 3 \)
A. \(\sqrt 2 \)
B. \(-\sqrt 2 \)
C. 5
D. 3
A. \(w = \frac{8}{3}\)
B. \(w = \frac{{10}}{3}\)
C. \(w = \frac{8}{3} + i\)
D. \(w = \frac{{10}}{3} + i\)
A. x = 1
B. x = -2
C. x = -1
D. x = 2
A. I(0;1)
B. I(0;-1)
C. I(-1;0)
D. I(1;0)
A. \(\sqrt 2 {a^3}\)
B. \(3\sqrt 2 {a^3}\)
C. 3a3
D. \(\sqrt 6 {a^3}\)
A. Khối lập phương
B. Khối bát diện đều
C. Khối mười hai mặt đều
D. Khối hai mươi mặt đều.
A. \({V_{S.ACD}} = \frac{{{a^3}}}{3}\)
B. \({V_{S.ACD}} = \frac{{{a^3}}}{2}\)
C. \({V_{S.ACD}} = \frac{{{a^3}\sqrt 2 }}{6}\)
D. \({V_{S.ACD}} = \frac{{{a^3}\sqrt 3 }}{6}\)
A. \(\frac{{{a^3}}}{2}\)
B. \(\frac{{3{a^3}}}{4}\)
C. \(\frac{{3{a^3}}}{8}\)
D. \(\frac{{3{a^3}}}{2}\)
A. \(4\pi {a^2}.\)
B. \(3\pi {a^2}.\)
C. \(2\pi {a^2}.\)
D. \(\pi {a^2}.\)
A. 200cm
B. 100cm
C. 140cm
D. 80cm
A. \(\frac{{a\sqrt 2 }}{2}.\)
B. 3a
C. \(\frac{{a\sqrt 6 }}{2}.\)
D. \(a\sqrt 6 .\)
A. \(\frac{{4\pi {a^3}}}{3}.\)
B. \(\frac{{4\pi {a^3}}}{9}.\)
C. \(\frac{{4\pi {a^3}}}{{27}}.\)
D. \(\frac{{2\pi {a^3}}}{3}.\)
A. \(\overrightarrow n = \left( { - 2; - 3;4} \right)\)
B. \(\overrightarrow n = \left( { - 2;3;4} \right)\)
C. \(\overrightarrow n = \left( { - 2;3; - 4} \right)\)
D. \(\overrightarrow n = \left( {2;3; - 4} \right)\)
A. \(I\left( { - 4;5; - 3} \right)\), R = 7
B. \(I\left( { 4;-5; 3} \right)\), R = 7
C. \(I\left( { - 4;5; - 3} \right)\), R = 1
D. \(I\left( { 4;-5; 3} \right)\), R = 1
A. \(d = \frac{{\sqrt {15} }}{3}\)
B. \(d = \frac{{\sqrt {12} }}{3}\)
C. \(d = \frac{{5\sqrt 3 }}{3}\)
D. \(d = \frac{{4\sqrt 3 }}{3}\)
A. m = 5
B. m = 1
C. m = -5
D. m = -1
A. 5x + 4y + z - 16 = 0
B. 5x - 4y + z - 16 = 0
C. 5x - 4y - z - 16 = 0
D. 5x - 4y + z + 16 = 0
A. \(\left\{ \begin{array}{l} x = 1 + 31t\\ y = 1 + 5t\\ z = - 2 - 8t \end{array} \right.\)
B. \(\left\{ \begin{array}{l} x = 1 - 31t\\ y = 1 + 5t\\ z = - 2 - 8t \end{array} \right.\)
C. \(\left\{ \begin{array}{l} x = 1 + 31t\\ y = 3 + 5t\\ z = - 2 - 8t \end{array} \right.\)
D. \(\left\{ \begin{array}{l} x = 1 + 31t\\ y = 1 + 5t\\ z = 2 - 8t \end{array} \right.\)
A. \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} = 9\)
B. \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\)
C. \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 2} \right)^2} = 9\)
D. \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 2} \right)^2} = 9\)
A. \(\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 2}}{3}\)
B. \(\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 2}}{3}\)
C. \(\frac{{x + 1}}{2} = \frac{{y - 1}}{1} = \frac{{z + 2}}{3}\)
D. \(\frac{{x - 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{3}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247