Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \(\frac{a}{2}\). Thể tích của khối nón ngoại tiế...

Câu hỏi :

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \(\frac{a}{2}\). Thể tích của khối nón ngoại tiếp hình chóp S.ABC bằng

A. \(\frac{{4\pi {a^3}}}{3}.\)

B. \(\frac{{4\pi {a^3}}}{9}.\)

C. \(\frac{{4\pi {a^3}}}{{27}}.\)

D. \(\frac{{2\pi {a^3}}}{3}.\)

* Đáp án

B

* Hướng dẫn giải

Gọi E là trung điểm của BC, dựng \(OH\bot SE\) tại H.

Chứng minh được \(OH\bot \left( SBC \right)\) nên suy ra \(OH=d\left[ O,\left( SBC \right) \right]=\frac{a}{2}\).

Trong tam giác đều ABC, ta có

\(OE=\frac{1}{3}AE=\frac{1}{3}.\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{3}\) và \(OA=\frac{2}{3}AE=\frac{2a\sqrt{3}}{3}.\)

Trong tam giác vuông SOE, ta có

\(\frac{1}{O{{H}^{2}}}=\frac{1}{O{{E}^{2}}}+\frac{1}{S{{O}^{2}}}\Rightarrow \frac{1}{S{{O}^{2}}}=\frac{1}{O{{H}^{2}}}-\frac{1}{O{{E}^{2}}}=\frac{1}{{{a}^{2}}}\Rightarrow SO=a\).

Vậy thể tích khối nón

\(V=\frac{1}{3}\pi O{{A}^{2}}.SO=\frac{1}{3}\pi {{\left( \frac{2a\sqrt{3}}{3} \right)}^{2}}.a=\frac{4\pi {{a}^{3}}}{9}\) (đvtt).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Sơn Hà

Số câu hỏi: 50

Copyright © 2021 HOCTAP247