Trong không gian Oxyz, cho đường thẳng d và mặt phẳng (P) lần lượt có phương trình \(d:\frac{x+3}{2}=\frac{y+1}{1}=\frac{z}{-1},\left( P \right):x-3y+2z+6=0\). Phương trình hình c...

Câu hỏi :

Trong không gian Oxyz, cho đường thẳng d và mặt phẳng (P) lần lượt có phương trình \(d:\frac{x+3}{2}=\frac{y+1}{1}=\frac{z}{-1},\left( P \right):x-3y+2z+6=0\).Phương trình hình chiếu của đường thẳng d lên mặt phẳng (P) là

A. \(\left\{ \begin{array}{l} x = 1 + 31t\\ y = 1 + 5t\\ z = - 2 - 8t \end{array} \right.\)

B. \(\left\{ \begin{array}{l} x = 1 - 31t\\ y = 1 + 5t\\ z = - 2 - 8t \end{array} \right.\)

C. \(\left\{ \begin{array}{l} x = 1 + 31t\\ y = 3 + 5t\\ z = - 2 - 8t \end{array} \right.\)

D. \(\left\{ \begin{array}{l} x = 1 + 31t\\ y = 1 + 5t\\ z = 2 - 8t \end{array} \right.\)

* Đáp án

A

* Hướng dẫn giải

Gọi (Q) là mặt phẳng chứa đường thẳng d và vuông góc với (P)

(Q) có vectơ pháp tuyến \({{\overrightarrow{n}}_{Q}}=\left[ \overrightarrow{{{u}_{d}}},\overrightarrow{{{u}_{P}}} \right]=\left( -1;-5;-7 \right)\)

Đường thẳng \(\Delta \) là hình chiếu vuông góc của d lên (P) chính là giao tuyến của (P) và (Q). Do đó. Điểm trên \(\Delta :A\left( 1;1;-2 \right)\)

Vectơ chỉ phương của \(\Delta \):

\(\overrightarrow u = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] = \left( {\left| {\begin{array}{*{20}{c}} { - 3}&2\\ { - 5}&{ - 7} \end{array}} \right|;\left| {\begin{array}{*{20}{c}} 2&1\\ { - 7}&{ - 1} \end{array}} \right|;\left| {\begin{array}{*{20}{c}} 1&{ - 3}\\ { - 1}&{ - 5} \end{array}} \right|} \right) = \left( {31;5; - 8} \right)\)

PTTS của \(\Delta :\left\{ \begin{array}{l} x = 1 + 31t\\ y = 1 + 5t\\ z = - 2 - 8t \end{array} \right.\left( {t \in R} \right)\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Sơn Hà

Số câu hỏi: 50

Copyright © 2021 HOCTAP247