Trong không gian Oxyz, cho điểm \(I\left( 1;3;-2 \right)\) và đường thẳng \(\Delta :\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\). Phương trình mặt cầu (S) có tâm là điểm I và cắt \...

Câu hỏi :

Trong không gian Oxyz, cho điểm \(I\left( 1;3;-2 \right)\) và đường thẳng \(\Delta :\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\). Phương trình mặt cầu (S) có tâm là điểm I và cắt \(\Delta \) tại hai điểm phân biệt A, B sao cho đoạn thẳng AB có độ dài bằng 4 có phương trình là

A. \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} = 9\)

B. \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\)

C. \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 2} \right)^2} = 9\)

D. \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 2} \right)^2} = 9\)

* Đáp án

C

* Hướng dẫn giải

Giả sử mặt cầu (S) cắt \(\Delta \) tại 2 điểm A, B sao cho AB=4 => (S) có bán kính R=IA

Gọi H là trung điểm đoạn AB, khi đó: \(IH\bot AB\Rightarrow \Delta IHA\) vuông tại H

Ta có, \(HA=2;IH=d\left( I,\Delta  \right)=\sqrt{5}\)

\(R=I{{A}^{2}}=I{{H}^{2}}+H{{A}^{2}}={{\left( \sqrt{5} \right)}^{2}}+{{2}^{2}}=9\)

Vậy phương trình mặt cầu cần tìm là:

\(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-3 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=9\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Sơn Hà

Số câu hỏi: 50

Copyright © 2021 HOCTAP247