Số giao điểm của đồ thị hàm số \(y = \frac{1}{3}{x^3} + {x^2} + 2x + 2020\) với trục hoành là

Câu hỏi :

Số giao điểm của đồ thị hàm số \(y = \frac{1}{3}{x^3} + {x^2} + 2x + 2020\) với trục hoành là

A. 0

B. 1

C. 2

D. 3

* Đáp án

B

* Hướng dẫn giải

Ta có \(y = \frac{1}{3}{x^3} + {x^2} + 2x + 2020 \Rightarrow y' = {x^2} + 2x + 2 > 0\,,\,\,\forall x \in R\).

Suy ra hàm số trên đồng biến trên R và do đó đồ thị của hàm số bậc ba trên cắt trục hoành tại đúng 1 điểm. Chọn B.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Sơn Mỹ

Số câu hỏi: 50

Copyright © 2021 HOCTAP247