A. 1
B. 3
C. 2
D. 0
D
Ta có \(y' = {x^2} - 2x - \left( {3m + 2} \right)\).
Để hàm số nghịch biến trên đoạn có độ dài bằng 4 thì phương trình y' = 0 có hai nghiệm phân biệt x1, x2 sao cho \(\left| {{x_1} - {x_2}} \right| = 4\).
\( \Leftrightarrow \left\{ \begin{array}{l} \Delta ' > 0\\ \left| {{x_1} - {x_2}} \right| = 4 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 1 + 3m + 2 > 0\\ {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 16 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m > - 1\\ {2^2} + 4\left( {3m + 2} \right) = 16 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m > - 1\\ 12m = 4 \end{array} \right. \Leftrightarrow m = \frac{1}{3}\)
Vì m thuộc Z nên \(m \in \emptyset \).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247