Cho hàm số f(x) có đồ thị như hình vẽ Số nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) của phương trình \(f\left( {4\left| {\sin x} \right|} \right) = 3\) là

Câu hỏi :

Cho hàm số f(x) có đồ thị như hình vẽ

A. 3

B. 10

C. 8

D. 6

* Đáp án

C

* Hướng dẫn giải

Đặt \(t = 4\left| {\sin x} \right|\), \(x \in \left[ { - \pi ;\pi } \right] \Rightarrow t \in \left[ {0;4} \right]\)

Khi đó phương trình \(f\left( {4\left| {\sin x} \right|} \right) = 3\) trở thành \(f\left( t \right) = 3,\forall t \in \left[ {0\,;\,4} \right]\)

Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(t) và đường thẳng y = 3.

Dựa vào đồ thị, ta có \(f\left( t \right) = 3 \Rightarrow \left[ \begin{array}{l} t = {a_1} \in \left( { - 1\,;\,0} \right)\,\,\,\left( L \right)\\ t = {a_2} \in \left( {0\,;\,1} \right)\\ t = {a_3} \in \left( {2\,;\,3} \right) \end{array} \right.\).

Trường hợp 1: \(t = {a_2} \in \left( {0;1} \right)\).

\( \Rightarrow \left| {\sin x} \right| = \frac{{{a_2}}}{4} \in \left( {0\,;\,\frac{1}{4}} \right) \Rightarrow \left[ \begin{array}{l} \sin x = - \frac{{{a_2}}}{4}\, \in \left( { - \frac{1}{4}\,;\,0} \right)\,\,\left( 1 \right)\\ \sin x = \frac{{{a_2}}}{4} \in \left( {0\,;\,\frac{1}{4}} \right)\,\,\,\,\,\,\,\,\left( 2 \right) \end{array} \right.\)

Phương trình (1) cho ta 2 nghiệm phân biệt \({x_1}\,;\,{x_2}\) thuộc khoảng \(\left[ { - \pi \,;\,\pi } \right]\).

Phương trình (2) cho ta 2 nghiệm \({x_3}\,;\,{x_4}\) phân biệt thuộc khoảng \(\left[ { - \pi \,;\,\pi } \right]\).

Trường hợp 2: \(t = {a_3} \in \left( {2;3} \right)\)

\( \Rightarrow \left| {\sin x} \right| = \frac{{{a_3}}}{4} \in \left( {\frac{1}{2};\,\frac{3}{4}} \right) \Rightarrow \left[ \begin{array}{l} \sin x = - \frac{{{a_3}}}{4}\, \in \left( { - \frac{3}{4}\,;\, - \frac{1}{2}} \right)\,\,\left( 3 \right)\\ \sin x = \frac{{{a_3}}}{4} \in \left( {\frac{1}{2};\,\frac{3}{4}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right) \end{array} \right.\)

Phương trình (3) cho ta 2 nghiệm phân biệt \({x_5}\,;\,{x_6}\) thuộc khoảng \(\left[ { - \pi \,;\,\pi } \right]\).

Phương trình (4) cho ta 2 nghiệm phân biệt \({x_7}\,;\,{x_8}\) thuộc khoảng \(\left[ { - \pi \,;\,\pi } \right]\).

Hình vẽ minh họa các trường hợp

Vậy phương trình có 8 nghiệm phân biệt

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Sơn Mỹ

Số câu hỏi: 50

Copyright © 2021 HOCTAP247