Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+9x+m\) (m là tham số thực). Gọi là tập hợp tất cả các giá trị của sao cho \(\underset{\left[ 0;2 \right]}{\mathop{\text{max}}}...

Câu hỏi :

Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+9x+m\) (m là tham số thực). Gọi  là tập hợp tất cả các giá trị của  sao cho \(\underset{\left[ 0;2 \right]}{\mathop{\text{max}}}\,{{\left[ f\left( x \right) \right]}^{2}}+\underset{\left[ 0;2 \right]}{\mathop{\text{min}}}\,{{\left[ f\left( x \right) \right]}^{2}}=2020\). Số tập con của S là:

A. 2

B. 4

C. 8

D. 16

* Đáp án

B

* Hướng dẫn giải

Ta có: \(f'\left( x \right) = 3{x^2} - 6x + 9 > 0\,\,\,\,\forall x \in R\) nên f(x) đồng biến trên đoạn [0;2].

Ta có \(f\left( 0 \right) = m;{\rm{  }}f\left( 2 \right) = 14 + m\)

Trường hợp 1: \(m.\left( {14 + m} \right) < 0 \Leftrightarrow  - 14 < m < 0\). Khi đó:

\(\left\{ \begin{array}{l} \mathop {\min }\limits_{\left[ {0;2} \right]} {\left[ {f\left( x \right)} \right]^2} = 0\\ \mathop {\max }\limits_{\left[ {0;2} \right]} {\left[ {f\left( x \right)} \right]^2} = \max \left\{ {{m^2};{{\left( {14 + m} \right)}^2}} \right\} < {14^2} = 196 \end{array} \right.\)

Suy ra không thỏa mãn điều kiện \(\mathop {{\rm{max}}}\limits_{\left[ {0;2} \right]} {\left[ {f\left( x \right)} \right]^2} + \mathop {{\rm{min}}}\limits_{\left[ {0;2} \right]} {\left[ {f\left( x \right)} \right]^2} = 2020\)

Trường hợp 2: \(m.\left( {14 + m} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l} m \ge 0\\ m \le - 14 \end{array} \right.\left( * \right)\)

Suy ra \(\mathop {{\rm{max}}}\limits_{\left[ {0;2} \right]} {\left[ {f\left( x \right)} \right]^2} + \mathop {{\rm{min}}}\limits_{\left[ {0;2} \right]} {\left[ {f\left( x \right)} \right]^2} = {m^2} + {\left( {14 + m} \right)^2} = 2{m^2} + 28m + 196\).

Khi đó: \(\mathop {{\rm{max}}}\limits_{\left[ {0;2} \right]} {\left[ {f\left( x \right)} \right]^2} + \mathop {{\rm{min}}}\limits_{\left[ {0;2} \right]} {\left[ {f\left( x \right)} \right]^2} = 2020 \Leftrightarrow 2{m^2} + 28m + 196 = 2020 \Leftrightarrow \left[ \begin{array}{l} m = 24\\ m = - 38 \end{array} \right.\)

Cả hai giá trị trên đều thỏa mãn (*). Nên S = {24;-38} có hai phần tử.    

Vậy số tập con của S là: 22 = 4.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Sơn Mỹ

Số câu hỏi: 50

Copyright © 2021 HOCTAP247