Gía trị nguyên dương bé nhất của tham số m để đường thẳng y = mx - 9 cắt đồ thị hàm số \(y = {x^2} - x\) tại hai điểm phân biệt là

Câu hỏi :

Gía trị nguyên dương bé nhất của tham số m để đường thẳng y = mx - 9 cắt đồ thị hàm số \(y = {x^2} - x\) tại hai điểm phân biệt là 

A. m = 4

B. m = 7

C. m = 5

D. m = 6

* Đáp án

D

* Hướng dẫn giải

Phương trình HĐGĐ: \({x^2} - x = mx - 9 \Leftrightarrow {x^2} - \left( {m + 1} \right)x + 9 = 0\)

Phương trình phải có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0\) hay \({m^2} + 2m - 35 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {m < - 7}\\ {m > 5} \end{array}} \right. \Rightarrow \) m nguyên dương bé nhất là m=6. 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Tây Trà

Số câu hỏi: 50

Copyright © 2021 HOCTAP247