Cho hình chóp S.ABCD có đáy là hình vuông tâm O, cạnh a. \(SA\bot \left( ABCD \right)\) và \(SA=a\sqrt{7}.\) Tính khoảng cách giữa hai đường thẳng SB và AC.

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình vuông tâm O, cạnh a. \(SA\bot \left( ABCD \right)\) và \(SA=a\sqrt{7}.\) Tính khoảng cách giữa hai đường thẳng SB và AC.

A. \(\frac{{a\sqrt {105} }}{7}.\)

B. \(\frac{{a\sqrt {115} }}{5}.\)

C. \(\frac{{a\sqrt 7 }}{{15}}.\)

D. \(\frac{{a\sqrt {105} }}{{15}}.\)

* Đáp án

D

* Hướng dẫn giải

Gọi I, H,J lần lượt  là trung điểm đoạn SD, AD  và IC. Ta có \(SB\parallel \left( IAC \right)\) và \(IH\bot \left( ABCD \right).\)

Ta có \(d\left( SB,AC \right)=d\left( SB,\left( IAC \right) \right)=\left( B,\left( IAC \right) \right)=d\left( D,\left( IAC \right) \right).\)

\(IA=\frac{SD}{2}=\frac{\sqrt{S{{A}^{2}}+A{{D}^{2}}}}{2}=\frac{\sqrt{7{{a}^{2}}+{{a}^{2}}}}{2}=a\sqrt{2}=AC;IC=\sqrt{I{{D}^{2}}+C{{D}^{2}}}=\sqrt{2{{a}^{2}}+{{a}^{2}}}=a\sqrt{3};IJ=\frac{a\sqrt{3}}{2}; AJ=\sqrt{I{{A}^{2}}-I{{J}^{2}}}=\sqrt{2{{a}^{2}}-\frac{3{{a}^{2}}}{4}}=\frac{a\sqrt{5}}{2}.\)

\({{S}_{\Delta IAC}}=\frac{1}{2}IC.AJ=\frac{1}{2}a\sqrt{3}.\frac{a\sqrt{5}}{2}=\frac{{{a}^{2}}\sqrt{15}}{4}.\)

\({{V}_{I.ACD}}=\frac{1}{3}{{S}_{\Delta ACD}}.IH=\frac{1}{3}.\frac{1}{2}{{a}^{2}}.\frac{1}{2}a\sqrt{7}=\frac{{{a}^{3}}\sqrt{7}}{12}.\)

Mặt khác \({{V}_{I.ACD}}=\frac{1}{3}{{S}_{\Delta IAC}}.d\left( D,\left( IAC \right) \right)\Rightarrow d\left( D,\left( IAC \right) \right)=\frac{3V}{{{S}_{\Delta IAC}}}=\frac{3{{a}^{3}}\sqrt{7}}{12}.\frac{4}{{{a}^{2}}\sqrt{15}}=\frac{a\sqrt{105}}{15}.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Tây Trà

Số câu hỏi: 50

Copyright © 2021 HOCTAP247