Có bao nhiêu giá trị nguyên của tham số thực m để phương trình \(4{{\cos }^{4}}x-8{{\cos }^{2}}x-m+1=0\) có 3 nghiệm thực phân biệt thuộc đoạn \(\left[ 0;\frac{3\pi }{2} \right]?\)

Câu hỏi :

Có bao nhiêu giá trị nguyên của tham số thực m để phương trình \(4{{\cos }^{4}}x-8{{\cos }^{2}}x-m+1=0\) có 3 nghiệm thực phân biệt thuộc đoạn \(\left[ 0;\frac{3\pi }{2} \right]?\)

A. 1

B. 4

C. 2

D. 3

* Đáp án

D

* Hướng dẫn giải

Đặt \(\cos x=t,t\in \left[ -1;1 \right]\)

PTTT: \(4{{t}^{4}}-8{{t}^{2}}+1=m\) (1)

Mỗi giá trị mỗi giá trị \(t\in \left( -1;0 \right]\) cho ta 2 giá trị \(x\in \left[ \frac{\pi }{2};\frac{3\pi }{2} \right]\backslash \left\{ \pi  \right\}\), với t=-1 cho ta 1 giá trị \(x=\pi \) và \(t\in \left( 0;1 \right]\) cho ta 1 giá trị

Xét hàm số f(t) = 4t4 -8t2 + 1 có BBT như sau:

Để PT đã cho có 3 nghiệm thì đường thẳng y = m phải cắt đồ thị hàm số f(t) tại một điểm có hoành độ thuộc (-1;0] và một điểm có hoành độ thuộc (0;1]

Dựa vào BBT suy ra - 3 < m < 1.

Có 3 số nguyên của m thỏa mãn đó la -2;-1;0. 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Tây Trà

Số câu hỏi: 50

Copyright © 2021 HOCTAP247