Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Trà Bồng Cho \(I=\int\limits_{0}^{4}{x\sqrt{1+2x\,}\text{d}x}\) và \(u=\sqrt{2x+1}\). Mệnh đề nào dưới đây sai?

Cho \(I=\int\limits_{0}^{4}{x\sqrt{1+2x\,}\text{d}x}\) và \(u=\sqrt{2x+1}\). Mệnh đề nào dưới đây sai?

Câu hỏi :

Cho \(I=\int\limits_{0}^{4}{x\sqrt{1+2x\,}\text{d}x}\) và \(u=\sqrt{2x+1}\). Mệnh đề nào dưới đây sai?

A. \(I = \frac{1}{2}\int\limits_1^3 {{x^2}\left( {{x^2} - 1} \right){\rm{d}}x} \)

B. \(I = \int\limits_1^3 {{u^2}\left( {{u^2} - 1} \right){\rm{d}}u} \)

C. \(I = \frac{1}{2}\left. {\left( {\frac{{{u^5}}}{5} - \frac{{{u^3}}}{3}} \right)} \right|_1^3\)

D. \(I = \frac{1}{2}\int\limits_1^3 {{u^2}\left( {{u^2} - 1} \right){\rm{d}}u} \)

* Đáp án

B

* Hướng dẫn giải

\(I=\int\limits_{0}^{4}{x\sqrt{1+2x}\text{d}x}\).

Đặt \(u=\sqrt{2x+1} \Rightarrow x=\frac{1}{2}\left( {{u}^{2}}-1 \right) \Rightarrow \text{d}x=u\,\text{d}u\), đổi cận: \(x=0\Rightarrow u=1\), \(x=4\Rightarrow u=3\).

Khi đó \(I=\frac{1}{2}\int\limits_{1}^{3}{\left( {{u}^{2}}-1 \right){{u}^{2}}\text{d}u}\).

Copyright © 2021 HOCTAP247