Gọi \({{z}_{1}}\) là nghiệm phức có phần ảo âm thỏa mãn: \({{z}^{2}}+6z+13=0\). Tìm phần ảo của số phức \(w={{\left( i+1 \right)}^{2}}{{z}_{1}}\).

Câu hỏi :

Gọi \({{z}_{1}}\) là nghiệm phức có phần ảo âm thỏa mãn: \({{z}^{2}}+6z+13=0\). Tìm phần ảo của số phức \(w={{\left( i+1 \right)}^{2}}{{z}_{1}}\).

A. 4

B. -6

C. -6i

D. 4i

* Đáp án

B

* Hướng dẫn giải

Ta có \({z^2} + 6z + 13 = 0 \Leftrightarrow \left[ \begin{array}{l} {z_1} = - 3 - 2i\\ {z_2} = - 3 + 2i \end{array} \right.\).

Suy ra \(w = {\left( {i + 1} \right)^2}{z_1} = {\left( {1 + i} \right)^2}\left( { - 3 - 2i} \right) = 4 - 6i\).

Phần ảo của số phức w là -6

Copyright © 2021 HOCTAP247