A. 403,32 (triệu đồng).
B. 293,32 (triệu đồng).
C. 412,23 (triệu đồng).
D. 393,12 (triệu đồng).
D
Gọi số tiền đóng hàng năm là A=12 (triệu đồng), lãi suất là r=6%=0,06.
Sau 1 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là \({{A}_{1}}=A\left( 1+r \right)\). (nhưng người đó không rút mà lại đóng thêm A triệu đồng nữa, nên số tiền gốc để tính lãi năm sau là \({{A}_{1}}+A\)).
Sau 2 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:
\({{A}_{2}}=\left( {{A}_{1}}+A \right)\left( 1+r \right)=\left[ A\left( 1+r \right)+A \right]\left( 1+r \right)=A{{\left( 1+r \right)}^{2}}+A\left( 1+r \right)\).
Sau 3 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:
\({{A}_{3}}=\left( {{A}_{2}}+A \right)\left( 1+r \right)=\left[ A{{\left( 1+r \right)}^{2}}+A\left( 1+r \right)+A \right]\left( 1+r \right)=A{{\left( 1+r \right)}^{3}}+A{{\left( 1+r \right)}^{2}}+A\left( 1+r \right)\).
…
Sau 18 năm, người đó đi rút tiền thì sẽ nhận được số tiền là:
\({{A}_{18}}=A{{\left( 1+r \right)}^{18}}+A{{\left( 1+r \right)}^{17}}+...+A{{\left( 1+r \right)}^{2}}+A\left( 1+r \right)\).
Tính: \({{A}_{18}}=A\left[ {{\left( 1+r \right)}^{18}}+{{\left( 1+r \right)}^{17}}+...+{{\left( 1+r \right)}^{2}}+\left( 1+r \right)+1-1 \right]\).
\(\Rightarrow {{A}_{18}}=A\left[ \frac{{{\left( 1+r \right)}^{19}}-1}{\left( 1+r \right)-1}-1 \right]=A\left[ \frac{{{\left( 1+r \right)}^{19}}-1}{r}-1 \right]=12\left[ \frac{{{\left( 1+0,06 \right)}^{19}}-1}{0,06}-1 \right]\approx 393,12\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247