A. \(I = \frac{{1186}}{{45}}\)
B. \(I = \frac{{1174}}{{45}}\)
C. \(I = \frac{{1222}}{{45}}\)
D. \(I = \frac{{1201}}{{45}}\)
A
Ta có \(x+2x.f\left( x \right) ={{\left[ {f}'\left( x \right) \right]}^{2}} \Rightarrow \sqrt{x}.\sqrt{1+2f\left( x \right)}={f}'\left( x \right) \Rightarrow \frac{{f}'\left( x \right)}{\sqrt{1+2f\left( x \right)}}=\sqrt{x}, \forall x\in \left[ 1;4 \right]\).
Suy ra \(\int{\frac{{f}'\left( x \right)}{\sqrt{1+2f\left( x \right)}}\text{d}x}=\int{\sqrt{x}\text{d}x}+C \Leftrightarrow \int{\frac{\text{d}f\left( x \right)}{\sqrt{1+2f\left( x \right)}}\text{d}x}=\int{\sqrt{x}\text{d}x}+C\)
\(\Rightarrow \sqrt{1+2f\left( x \right)}=\frac{2}{3}{{x}^{\frac{3}{2}}}+C\). Mà \(f\left( 1 \right)=\frac{3}{2} \Rightarrow C=\frac{4}{3}\). Vậy \(f\left( x \right)=\frac{{{\left( \frac{2}{3}{{x}^{\frac{3}{2}}}+\frac{4}{3} \right)}^{2}}-1}{2}\).
Vậy \(I=\int\limits_{1}^{4}{f\left( x \right)\text{d}x}=\frac{1186}{45}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247