A. \(\frac{{31}}{2}\)
B. \(\frac{{29}}{2}\)
C. \(- \frac{{31}}{2}\)
D. \( - \frac{{25}}{2}\)
B
Đặt \(t = {10^z}\). Khi đó \({x^3} + {y^3} = a.{t^3} + b.{t^2}\).
Ta có \(\left\{ \begin{array}{l} \log \left( {x + y} \right) = z\\ \log \left( {{x^2} + {y^2}} \right) = z + 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + y = {10^z} = t\\ {x^2} + {y^2} = {10.10^z} = 10t \end{array} \right. \Rightarrow xy = \frac{{{t^2} - 10.t}}{2}\).
Khi đó \({x^3} + {y^3} = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right) = {t^3} - \frac{{3t\left( {{t^2} - 10t} \right)}}{2} = - \frac{1}{2}{t^3} + 15{t^2}\).
Suy ra \(a = - \frac{1}{2}\), b = 15.
Vậy \(a + b = \frac{{29}}{2}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247