Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Trần Phú Gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm phức của phương trình \({{z}^{2}}+2z+5=0\),...

Gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm phức của phương trình \({{z}^{2}}+2z+5=0\), trong đó \({{z}_{1}}\) có phần ảo dương. Tính \(\left| {{z}_{1}}+2{{z}_{2}} \right|\).

Câu hỏi :

Gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm phức của phương trình \({{z}^{2}}+2z+5=0\), trong đó \({{z}_{1}}\) có phần ảo dương. Tính \(\left| {{z}_{1}}+2{{z}_{2}} \right|\).

A. \(\left| {{z_1} + 2{z_2}} \right| = \sqrt {11} \)

B. \(\left| {{z_1} + 2{z_2}} \right| = \sqrt {13} \)

C. \(\left| {{z_1} + 2{z_2}} \right| = \sqrt 5 \)

D. \(\left| {{z_1} + 2{z_2}} \right| = 13\)

* Đáp án

C

* Hướng dẫn giải

\({z^2} + 2z + 5 = 0 \Leftrightarrow \left[ \begin{array}{l} {z_1} = - 1 + 2i\\ {z_2} = - 1 - 2i \end{array} \right.\) (vì z1 có phần ảo dương)

Nên \({z_1} + 2{z_2} =  - 3 + 2i \Rightarrow \left| {{z_1} + 2{z_2}} \right| = \sqrt {13} \)

Copyright © 2021 HOCTAP247