A. \(\frac{{31}}{2}.\)
B. -16
C. 8
D. 14
B
Tính \(I = \int\limits_0^4 {{x^2}f'\left( x \right)dx} \).
\(\left\{ \begin{array}{l} u = {x^2}\\ dv = f'\left( x \right)dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = 2dx\\ v = f\left( x \right) \end{array} \right.\)
Do đó \(I = {x^2}.\left. {f\left( x \right)} \right|_0^4 - \int\limits_0^4 {2x.f\left( x \right)dx} ,\) ta tính \(\int\limits_0^4 {2x.f\left( x \right)dx} \).
Xét \(\int\limits_0^1 {xf\left( {4x} \right)dx} = 1.\)
Đặt \(t = 4x \Rightarrow \int\limits_0^4 {\frac{1}{4}t.f\left( t \right).\frac{1}{4}dt} = 1 \Rightarrow \int\limits_0^4 {t.f\left( t \right)dt} = 16 \Rightarrow \int\limits_0^4 {x.f\left( x \right)} dx = 16.\)
Xét \(I = \int\limits_0^4 {{x^2}f'\left( x \right)} dx.\) Suy ra: \(I = \left. {{x^2}.f\left( x \right)} \right|_0^4 - \int\limits_0^4 {2x.f\left( x \right)dx} = {4^2}f\left( 4 \right) - 2.16 = - 16.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247