Cho khối lăng trụ đứng ABC.A'B'C' có tất cả các cạnh đều bằng a. Mặt phẳng \(\left( \alpha \right)\) qua A’B’ và trọng tâm G của tam giác ABC cắt AC, BC lần lượt tại điểm E, F. Tí...

Câu hỏi :

Cho khối lăng trụ đứng ABC.A'B'C' có tất cả các cạnh đều bằng a. Mặt phẳng \(\left( \alpha  \right)\) qua A’B’ và trọng tâm G của tam giác ABC cắt AC, BC lần lượt tại điểm E, F. Tính thể tích V của khối đa diện A'B'ABFE.

A. \(V = \frac{{{a^3}\sqrt 3 }}{{27}}\)

B. \(V = \frac{{{a^3}\sqrt 3 }}{{18}}\)

C. \(V = \frac{{2{a^3}\sqrt 3 }}{{27}}\)

D. \(V = \frac{{5{a^3}\sqrt 3 }}{{54}}\)

* Đáp án

C

* Hướng dẫn giải

Thể  tích khối lăng trụ đứng ABC.A'B'C' là \({{V}_{1}}=\frac{{{a}^{3}}\sqrt{3}}{4}\).

Thể tích  của khối đa diện A'B'ABFE là \(V={{V}_{A'.ABFE}}+{{V}_{A'.BB'F}}\).

Ta có \({{S}_{ABFE}}=\frac{5}{9}{{S}_{\Delta ABC}}\Rightarrow {{V}_{A'.ABFE}}=\frac{5}{9}{{V}_{A'.ABC}}=\frac{5}{27}{{V}_{1}}\).

Mà \({{V}_{A'.BB'F}}={{V}_{A.BB'F}}={{V}_{B'.ABF}}=\frac{1}{3}{{S}_{\Delta ABF}}.AA'=\frac{1}{3}.\frac{1}{3}{{S}_{\Delta ABA}}\text{.AA }\!\!'\!\!\text{  =}\frac{1}{9}{{V}_{1}}\).

Do đó \(V={{V}_{A'.ABFE}}+{{V}_{A'.BB'F}}=\left( \frac{5}{27}+\frac{1}{9} \right){{V}_{1}}=\frac{2{{a}^{3}}\sqrt{3}}{27}\)

Copyright © 2021 HOCTAP247