Cho hàm số \(f\left( x \right)=\frac{x-m}{x-2}\) (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của m nguyên thuộc \(\left[ -10;10 \right]\) sao cho \(\underset{\left[ 0;...

Câu hỏi :

Cho hàm số \(f\left( x \right)=\frac{x-m}{x-2}\) (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của m nguyên thuộc \(\left[ -10;10 \right]\) sao cho \(\underset{\left[ 0;1 \right]}{\mathop{\max }}\,\left| f\left( x \right) \right|+\underset{\left[ 0;1 \right]}{\mathop{\min }}\,\left| f\left( x \right) \right|>2\). Số phần tử của S là

A. 18

B. 8

C. 10

D. 19

* Đáp án

A

* Hướng dẫn giải

Tập xác định \(D = R\backslash \left\{ 2 \right\}\).

*m = 2 ta có f(x) = 1, khi đó \(\mathop {\max }\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + \mathop {\min }\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 2\) không thỏa mãn

* m khác 2, ta có \(y' = \frac{{m - 2}}{{{{\left( {x - 2} \right)}^2}}}\) ⇒ hàm số đơn điệu trên mỗi khoảng của tập xác định nên đơn điệu trên

Ta có \(f\left( 0 \right) = \frac{m}{2},f\left( 1 \right) = m - 1\) và đồ thị hàm số cắt trục hoành tại điểm (m;0).

TH1: \(\frac{m}{2}.\left( {m - 1} \right) \le 0 \Leftrightarrow 0 \le m \le 1\), ta có \(\mathop {\min }\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 0,\,\left[ \begin{array}{l} \mathop {\max }\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = \frac{m}{2}\\ \mathop {\max }\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| = 1 - m \end{array} \right.\)

Khi đó \(\left[ \begin{array}{l} \frac{m}{2} > 2\\ 1 - m > 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} m > 2\\ m < - 1 \end{array} \right.\) (Vô nghiệm)

TH2: \(\frac{m}{2}.\left( {m - 1} \right) > 0 \Leftrightarrow \left[ \begin{array}{l} m > 1\\ m < 0 \end{array} \right.\)

Vậy \(\mathop {\max }\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| + \mathop {\min }\limits_{\left[ {0;1} \right]} \left| {f\left( x \right)} \right| > 2 \Leftrightarrow \left| {\frac{m}{2}} \right| + \left| {m - 1} \right| > 2\)

*) m < 0, ta có \(\left| {\frac{m}{2}} \right| + \left| {m - 1} \right| > 2 \Leftrightarrow - \frac{m}{2} + 1 - m > 2 \Leftrightarrow - 3m > 2 \Leftrightarrow m < - \frac{2}{3}\)

*) \(m > 1,m \ne 2\), ta có \(\left| {\frac{m}{2}} \right| + \left| {m - 1} \right| > 2 \Leftrightarrow \frac{m}{2} + m - 1 > 2 \Leftrightarrow 3m > 6 \Leftrightarrow m > 2\).

Copyright © 2021 HOCTAP247