A. \(\frac{{{V_1}}}{{{V_2}}} = 2\)
B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{1}{2}\)
C. \(\frac{{{V_1}}}{{{V_2}}} = 1\)
D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{2}{3}\)
C
Gọi V là thể tích khối lăng trụ \(ABC.{A}'{B}'{C}'\). Ta có \({{V}_{1}}={{V}_{M.ABC}}+{{V}_{M.BCPN}}\).
\({{V}_{M.ABC}}=\frac{1}{3}{{S}_{ABC}}.d\left( M,\left( ABC \right) \right)=\frac{1}{3}.\frac{2}{3}{{S}_{ABC}}.d\left( {A}',\left( ABC \right) \right)=\frac{2}{9}V\).
\({{V}_{M.{A}'{B}'{C}'}}=\frac{1}{3}{{S}_{{A}'{B}'{C}'}}.d\left( M,\left( {A}'{B}'{C}' \right) \right)=\frac{1}{3}.\frac{1}{3}{{S}_{{A}'{B}'{C}'}}.d\left( M,\left( {A}'{B}'{C}' \right) \right)=\frac{1}{9}V\).
Do \(BC{C}'{B}'\) là hình bình hành và \(N{B}'=2NB, PC=P{C}'\) nên \({{S}_{{B}'{C}'PN}}=\frac{7}{5}{{S}_{BCPN}}\).
Suy ra \({{V}_{M.{B}'{C}'PN}}=\frac{7}{5}{{V}_{M.BCPN}}\), Từ đó \(V={{V}_{M.ABC}}+{{V}_{M.BCPN}}+{{V}_{M.{A}'{B}'{C}'}}+{{V}_{M.{B}'{C}'PN}}\)
\(\Leftrightarrow V=\frac{2}{9}V+{{V}_{M.BCPN}}+\frac{1}{9}V+\frac{7}{5}{{V}_{M.BCPN}}\Leftrightarrow {{V}_{M.BCPN}}=\frac{5}{18}V\).
Như vậy \({{V}_{1}}=\frac{2}{9}V+\frac{5}{18}V=\frac{1}{2}V\Rightarrow {{V}_{2}}=\frac{1}{2}V\). Bởi vậy: \(\frac{{{V}_{1}}}{{{V}_{2}}}=1\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247