A. \(g\left( 0 \right) < g\left( { - 1} \right) < g\left( 2 \right).\)
B. \(g\left( 2 \right) < g\left( { - 1} \right) < g\left( 0 \right).\)
C. \(g\left( 2 \right) < g\left( 0 \right) < g\left( { - 1} \right).\)
D. \(g\left( { - 1} \right) < g\left( 0 \right) < g\left( 2 \right).\)
B
\(3{{S}_{1}}=3\int\limits_{-1}^{0}{\left( {{x}^{2}}-{f}'\left( x \right) \right)\text{d}x}=\left. \left( {{x}^{3}}-3f\left( x \right) \right) \right|_{-1}^{0}=g\left( 0 \right)-g\left( -1 \right)>0\Rightarrow g\left( 0 \right)>g\left( -1 \right).\)
\(3{{S}_{2}}=3\int\limits_{0}^{2}{\left( {f}'\left( x \right)-{{x}^{2}} \right)}\text{d}x=\left. \left( 3f\left( x \right)-{{x}^{3}} \right) \right|_{0}^{2}=g\left( 0 \right)-g\left( 2 \right)>0\Rightarrow g\left( 0 \right)>g\left( 2 \right).\)
Mà \({{S}_{1}}<{{S}_{2}}\) nên \(g\left( 0 \right)-g\left( -1 \right)<g\left( 0 \right)-g\left( 2 \right)\Leftrightarrow g\left( -1 \right)>g\left( 2 \right)\)
Vậy \(g\left( 2 \right)<g\left( -1 \right)<g\left( 0 \right).\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247