Cho các số thực x,y thỏa mãn \(\sqrt{2x+3}+\sqrt{y+3}=4\). Giá trị nhỏ nhất của \(\sqrt{x+2}+\sqrt{y+9}\) bằng

Câu hỏi :

Cho các số thực x,y thỏa mãn \(\sqrt{2x+3}+\sqrt{y+3}=4\). Giá trị nhỏ nhất của \(\sqrt{x+2}+\sqrt{y+9}\) bằng

A. \(\sqrt 6  + \sqrt {\frac{{17}}{2}} \)

B. \(\sqrt 3 \)

C. \(\frac{{3\sqrt {10} }}{2}\)

D. \(\sqrt {\frac{1}{2}}  + \sqrt {21} \)

* Đáp án

C

* Hướng dẫn giải

\(\begin{array}{l} P = \sqrt {x + 2} + \sqrt {y + 9} = \sqrt {\frac{{{{\left( {\sqrt {2x + 3} } \right)}^2} + 1}}{2}} + \sqrt {{{\left( {\sqrt {y + 3} } \right)}^2} + 6} \\ = \sqrt {\left( {{{\left( {\sqrt {2x + 3} } \right)}^2} + 1} \right)\left( {\frac{4}{{10}} + \frac{1}{{10}}} \right)} + \sqrt {\left( {{{\left( {\sqrt {y + 3} } \right)}^2} + 6} \right)\left( {\frac{4}{{10}} + \frac{6}{{10}}} \right)} \\ \ge \frac{2}{{\sqrt {10} }}\sqrt {2x + 3} + \frac{1}{{\sqrt {10} }} + \frac{2}{{\sqrt {10} }}\sqrt {y + 3} + \sqrt 6 .\frac{{\sqrt 6 }}{{\sqrt {10} }}\\ \ge \frac{2}{{\sqrt {10} }}\left( {\sqrt {2x + 3} + \sqrt {y + 3} } \right) + \frac{7}{{\sqrt {10} }} = \frac{{3\sqrt {10} }}{2} \end{array}\)

Copyright © 2021 HOCTAP247