Cho \(F\left( x \right)=\frac{-1}{2{{\sin }^{2}}x}\) là một nguyên hàm của hàm số \(\frac{f\left( x \right)}{{{\cos }^{2}}x}.\) Tìm họ nguyên hàm của hàm số \({f}'\left( x \right)\...

Câu hỏi :

Cho \(F\left( x \right)=\frac{-1}{2{{\sin }^{2}}x}\) là một nguyên hàm của hàm số \(\frac{f\left( x \right)}{{{\cos }^{2}}x}.\) Tìm họ nguyên hàm của hàm số \({f}'\left( x \right)\tan x.\)

A. \(\int {f'\left( x \right)\tan x{\rm{d}}x}  = \frac{{\cos x}}{{{{\sin }^3}x}} - \frac{1}{{2{{\sin }^2}x}} + C.\)

B. \(\int {f'\left( x \right)\tan x{\rm{d}}x}  = \frac{3}{2}{\cot ^2}x + C.\)

C. \(\int {f'\left( x \right)\tan x{\rm{d}}x}  = \frac{1}{2}{\cot ^2}x + C.\)

D. \(\int {f'\left( x \right)\tan x{\rm{d}}x}  = \frac{{\cos x}}{{{{\sin }^3}x}} + \frac{1}{{2{{\sin }^2}x}} + C.\)

* Đáp án

B

* Hướng dẫn giải

Đặt \(u=\tan x\Rightarrow \text{d}u=\frac{1}{{{\cos }^{2}}x}\text{d}x,\text{d}v={f}'\left( x \right)\text{d}x\Rightarrow v=f\left( x \right).\)

Do đó: \(\int{{f}'\left( x \right)\tan x\text{d}x}=\tan x.f\left( x \right)-\int{\frac{f\left( x \right)}{{{\cos }^{2}}x}\text{d}x}=\tan x.\frac{\cos x}{{{\sin }^{3}}x}+\frac{1}{2{{\sin }^{2}}x}+C=\frac{3}{2}{{\cot }^{2}}x+C.\)

Copyright © 2021 HOCTAP247