Trong không gian với hệ tọa độ Oxyz, xét mặt cầu có phương trình \({{x}^{2}}-2ax+{{y}^{2}}-2by+{{\left( z-c \right)}^{2}}=0,\) với a,b,c là các tham số và a,b không đồng thời bằng...

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, xét mặt cầu có phương trình \({{x}^{2}}-2ax+{{y}^{2}}-2by+{{\left( z-c \right)}^{2}}=0,\) với a,b,c là các tham số và a,b không đồng thời bằng 0. Mệnh đề nào dưới đây đúng ?

A. Mọi mặt cầu đó tiếp xúc với mặt phẳng (Oxy)

B. Mọi mặt cầu đó tiếp xúc với trục Oz

C. Mọi mặt cầu đó tiếp xúc với các trục Ox và Oy

D. Mọi mặt cầu đó đi qua gốc tọa độ O

* Đáp án

B

* Hướng dẫn giải

Bán kính mặt cầu bằng \(\sqrt{{{a}^{2}}+{{b}^{2}}},\) khoảng cách từ tâm \(I\left( a;b;c \right)\) của mặt cầu theo thứ tự đến \(O,Ox,Oy,Oz,\left( Oxy \right),\left( Oyz \right),\left( Oxz \right)\) bằng

\(\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}},\sqrt{{{b}^{2}}+{{c}^{2}}},\sqrt{{{a}^{2}}+{{c}^{2}}},\sqrt{{{a}^{2}}+{{b}^{2}}}$,$\left| c \right|,\left| a \right|,\left| b \right|.\) Do đó \(R=d\left( I,Oz \right).\)

Copyright © 2021 HOCTAP247